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Abstract:- Response variables are scored as counts, for example, dengue hemorrhagic fever 
(DHF) number cases exposed in densely population of urban areas of Indonesia, for example 
in Kendari city as the capital of Southeast Sulawesi Province, are often arise in Bayesian 
analysis. At a certain time is not found (or zero) the DHF cases in the case, but other times 
appear number of DHF cases. When the number of zeros exceeds the amount expected such 
as under the Poisson density, the zero inflated Poisson (ZIP) model is more appropriate. In 
using the ZIP model in DHF studies, it is necessary to accommodate local environmental 
characters as predictors. This study is proposing a Bayesian mixture ZIP spatio-temporal 
(BMZIP S-T) model and to construct its posterior distribution. 
 
Keywords:- Bayesian, dengue hemorrhagic fever, posterior distribution, score as count, zero 

exceeds, ZIP  
 
1.Introduction 
Dengue hemorrhagic fever (DHF) cases as 
scored counts are threatened in densely 
population areas of Kendari-Indonesia. The 

Kendari city is capital of Southeast Sulawesi 
province of Indonesia. Modeling of DHF 
data that accommodates an environmental 
character is useful to analyze endemic 
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locations. The endemic locations are source 
of DHF cases and potential outspread to 
other locations [1, 2]. The spreading of DHF 
cases is influenced by mobility of people as 
random effects [3, 4], spatial heterogeneity [5, 
6, 7], and temporal factor [8, 9, 10]. In 
addition, by [11, 12] outlined that DHF is 
considerate in two-level hierarchical data. 

When the number of zeros exceeds the 
amount expected under a certain density, as 
for example, the Poisson density, a 
possibility for modeling the extra-zeros has 
been proposed by [13]. In using the Bayesian 
zero inflated Poisson (BZIP) model in DHF 
data, it is necessary to accommodate the 
environmental fluctuates. Model for BZIP 
count data with random effects accounting 
for intragroup correlation and dependence of 
clustered observations either in the logistic 
regression model of the mixture parameter of 
the Poisson parameter have been discussed 
by [14, 15]. In this article, BZIP modeling 
presents special challenges, in addition of the 
problem of extra zeros, spatial and temporal 
dependency, additional of random effects for 
the correlation within and between clusters, 
and mixing parameters and distribution. We 
called Bayesian mixed ZIP Spatio-temporal 
(or BMZIP S-T) modeling.  

The BMZIP S-T model considering the 
uncertainty factors in space-time term are a 
complex joint posterior, and then the 
parameter estimation needs the computational 
intensive approach [16, 17, 18]. One way to 
solve the estimation is constructing posterior 
distribution.  
 
2.Materials and Methods 
2.1.Pre-Processing Data 
Kendari as the capital of Southeast Sulawesi 
province of Indonesia, is located 
geographically in the south of the equator 
and stretches from west to east (see Figure 
2.1). The reason to choose the Kendari is one 

of the cities in Indonesia (a tropical country) 
with high DHF cases (2064 cases or 0.66% 
of population) during period 2013-2015. The 
population of Kendari was 423.812 in 2015 
census with the population density at around 
1.094 people per square kilometer (km2). The 
city is situated around 3m-30m above sea 
level with the temperature at 23° C-32° C 
and the humidity at 81%-85% for the whole 
year. The wet season usually starts in January 
and ends in June. The higher rainfall 
(200mm-300mm) occurs during 
January-April and the less rainfall is around 
October-November (below 100 mm). Data 
reviews were obtained from the 
Meteorological, Climatological and 
Geophysics Agency (BMKG) and the 
Central Bureau of Statistics (BPS) of 
Kendari. 
 
2.1.1.Distribution Checking 
The DHF monthly data, for period 
2013-2015, in 10 districts of Kendari, are 
showing the majority as 90% Poisson 
distribution and 10% binomial distribution 
with p-value above 5% (see Table 2.1). 
Binomial distribution is approached by the 
Poisson process for large number of 
population compared to the number of DHF 
cases.  

 
Figure 2.1: The map of Kendari City 

 
Table 2.1: Adjacency relationships between 
districts in Kendari and Goodness of fit test 
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Co- 
de 

District/ 
location 

Adja- 
cency 
matrix 

K-S 
(p-value) 

Distri- 
bution 

1 Mandonga 3,4,8,10 0,61341 Poisson 
2 Baruga 3,5,6,8 0,05417 Poisson 
3 Puwatu 1,2,4,5 0,16373 Poisson 
4 Kadia 1,3,5,8 0,05119 Poisson 
5 Wua-Wua 2,3,4,8 0,0755 Poisson 
6 Poasia 2,7,8 0,19575 Poisson 
7 Abeli 6 0,30509 Binomial 
8 Kambu 1,2,4,5,6 0,14073 Poisson 
9 Kendari 10 0,11835 Poisson 
10 Kendari 

Barat 1,9 0,09434 Poisson 

In Table 2.1 also outlines adjacency 
matrix between districts. This compiled 
based on the code in Figure 2.1. Queen 
Principle is used to arrange weighting matrix 
into a spatial contiguity. It was used to test 
the spatial dependencies. 

 
2.1.2.Spatial Detection 
The spread of DHF in a location is affected by 
other location nearby. If a location is 
becoming DHF endemic, then the other 
locations are closed to it are immediately to be 
high risk. The population of Aedes Aegypti is 
fluctuating based on the characteristics of the 
location. Detection is required to determine 
the spatial dependency of DHF incident, as 
initial information before used in modeling. 
Moran index ( ρ ) is a technique to detect 
spatial dependency. Moran index value is in 
the range -1 and 1 [19, 20]. The formula of 
Moran index, 

( )( )

( )

1 1

2

1 1 1

,

S S
sj s j

s j
S S S

sj s
s j s

w y y y y
S

w y y
ρ = =

= = =

− −

=

−

∑ ∑

∑ ∑ ∑

 

where the S is the number of locations, sjw is 

weighted location, sy is the number of DHF 
data at the location s, and y  is the average 
of DHF data.  

In January, February, March, April, and 

December, show positive Moran index. This 
means that DHF cases in adjacent locations 
have similar patterns. May to November, it is 
no founding the Moran index, because there 
is not DHF case (see Table 2.2).  

Moran scatter plot is interpreting the 
relationship of DHF between locations. The 
spread of DHF cases is divided into four 
quadrants, there are high-high (HH), 
low-high (LH), low-low (LL), and high-low 
(HL). In Table 2.2 also, given a summary of 
spatial dependency testing of DHF cases in 
10 districts of Kendari city, for period 
2013-2015.  

HH quadrant indicating the location of 
DHF cases is high case, such as Puwatu, 
surrounded the location with high DHF cases 
too, such as Wua-Wua. LH quadrant 
indicating the location of DHF cases is low 
case, such as Mandonga, but surrounded the 
location with high DHF cases, such as 
Wua-Wua. LL quadrant indicating the 
location of DHF cases is low case, such as 
Kendari, surrounded the location with low 
DHF cases, such as the Kendari Barat. HL 
quadrant indicating the location is high DHF 
cases, such as Kadia, surrounded the location 
with low DHF cases, such as Poasia. 
 
2.1.3.Temporal Detection 
To find out the DHF data is temporal 
dependencies, then it is deemed as time 
series data. An autocorrelation function 
(ACF) is a tool to detect temporal 
dependencies. There are four patterns of time 
series data, i.e. horizontal, trend, seasonal, 
and cyclical [18]. Horizontal, mean an 
incidence of DHF is unpredictable and 
random. Trend, mean an incidence of DHF is 
tendency to go up and down. Seasonal is 
DHF fluctuations occurred periodically at a 
certain time (quarter, quarterly, monthly, 
weekly, or daily). Cyclical is DHF 
fluctuations occurred in a long time.   
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ACF is a relationship between DHF data, is 
expressed as a set of all the ACF for various 
lag, , 1, 2,...k kρ = , with 0 1ρ = . The ACF 
coefficients for the kth lag of time series data, 
stated:  

( , ) , 1, 2,...
( ) ( )

t t k
k

t t k

Cov t
Var Var

ρ +

+
= =

y y
y y

 

 
 
 
 
 
Table 2.2:  Moran scatter plot summary of 
DHF monthly data, period 2012-2014, in 10 
districts of Kendari 
 

 
 
 
 
 
 

The DHF data have temporal 
dependencies if the initial value of the ACF 
exceeds the boundary line, and then 
decreases gradually. Detection results show 
that for DHF data, period 2013-2015, in 10 
districts of Kendari, are the initial value of 
the ACF exceeds the boundary line on the 
lag-1 then decreases gradually. This means 
that DHF cases of Kendari is temporal 
dependencies.  
Based on pre-processing of Kendari DHF 
data for 10 districts, there are spatial and 
temporal dependencies. Furthermore, the 
DHF data checking are majority as Poisson 
distribution. There is not DHF case (or zero 
case) for May to November.  
 
2.2.Standard ZIP Regression Model 
Poisson regression model is starting point of 
modeling count data and flexible to be 
parameterize in the form of distribution 

function [21, 22, 23]. Supposed , 1,...,sy s S=  
be a number of DHF cases, where S is 
number of location, and sx  is a predictor at 
location s. Then, density function is 
expressed 

'( ) , exp( ), 0,1, 2,..., 1,...,
!

s y
s

s s s s s s
e

f y x x y s S
y

λ λ
λ β

−

= = = =  

(1) 
If count data has excess-zero, then (1) can be 
modified into ZIP model [2, 24]. The 

Time Quad
-rant 

District or Location Moran 
Index 

January 

H-H Puwatu 

0,116 
L-H 

Mandonga, Baruga, 
Wua-Wua, Abeli, 
and Kambu 

H-L Kadia and Poasia 

L-L Kendari and 
Kendari Barat 

February 

H-H Puwatu and 
Wua-Wua 

0,359 L-H Mandonga, Baruga, 
Abeli, and Kambu 

H-L Kadia and Poasia 
 L-L Kendari and 

Kendari barat 

March 

H-H 
Kendari, Kendari 
Barat, and 
Wua-Wua 

0,065 L-H Mandonga and 
Puwatu 

H-L Kadia 

L-L Baruga, Poasia, 
Abeli, and Kambu 

April 

H-H Poasia 

0,104 
L-H 

Mandoanga, 
Baruga, Kadia, 
Wua-Wua, Abeli, 
and Kendari 

H-L Kambu and Kendari 
Barat 

L-L Puwatu 
May-No

p.  - Not  
number 

Dec. 

H-H Puwatu, Kadia, and 
Kambu 

0,068 L-H 
Mandonga, Baruga, 
Wua-Wua, and 
Kendari 

H-L Kendari Barat 
L-L Poasia and Abeli 
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application of the ZIP model using Bayesian 
approach has been discussed for many 
subjects, for example, epidemiology [24,25] 
and health [26]. 

Observations in the ZIP model are two 
possible data generating processes [27]. The 
first process is selected with probability sΩ  
(generate always zero count) and second 
process with probability 1 s−Ω  (generate 
counts from Poisson model). In general, the 
ZIP model is written 

( 0) (1 ) , 0 1s
s s s sP y e λ−= = −Ω +Ω ≤ Ω ≤    (2) 

( ) , 1, 2,..., , 0
!

sk
s

s s s
e

P y k k
k

λλ
λ

−

= = Ω = ∞ < < ∞   (3) 

Some researchers use the Bayesian approach 
to solve the ZIP model, for example in [28, 
29]. They used Markov Chain Monte Carlo 
(MCMC) method to estimate the parameters 
of ZIP model. To simplify the computation 
process, by [30] introduced an alternative 
model, by mixing Bernoulli distribution. 

ZIP

~ Poisson( (1 )) , ~ Bernoulli( )
( ;0) (1 ) ( ; )

s s s s s

s P s s P s s

y U U
f f y f y

λ
λ

− Ω
= Ω + −Ω

   (4) 

Model (4) is a base for constructing the 
BMZIP S-T model. 
 
3.Results And Discussion 
 
3.1.BMZIP S-T Regression Model 

 
The BMZIP S-T model is integrating three 
main components, namely, the spatial 
heterogeneity as predictor ( pstx ), two random 
effects local and global ( st stu v+ ), and 
temporal trend ( )sα δ+ . Local random effect 
is local uncertainty relation, while the global 
random effect is the relationship between 
locations [31]. Trend temporal is the 
temporal occurrence of DHF cases that has 
same intercept but temporal varying at each 
location. The GLM concept is also used in 
the BMZIP S-T structure.  

Assumed that the DHF case is count data,
sty ,and distributed by i.i.d Poisson 

distribution with parameter stλ  in the district 
sth at the time tth. Then, BZIP S-T structure is 
expressed 

0
1

0
1

~ Poisson( ), , 1,..., , 1,...,

log( ) log(P(Ir) ) ,

log log(P(Ir) ) .
1

st st st
P

st st p pst st s z
p

P
st

st p pst st s z
pst

y y Z t T s S

x t

x t

λ

λ β β

β β

+

=

=

∈ = =

= + + + Ξ + Φ

 Ω
= + + + Ξ + Φ −Ω 

∑

∑

  (5)  

where S is the number of districts, T is 
observation time, P is the number of 
predictors, P(Ir)st is probability incident risk 
in district sth at time tth, pstx is pth predictor in 
district sth at time tth, st st stu vΞ = +  is local 
and global random effect (CAR model) in 
district sth at time tth, and s sα δΦ = + is 
trend temporal. The uτ  is precision 
parameter for su , vτ  is precision parameter 
for sv , ρ is parameter of spatial dependency 
which 1 1ρ− ≤ ≤ , D  is total neighbor of all 
locations, and ( )sε is neighboring number of 
location of s. The meaning of sα δ+  is each 
location has same intercept (α ), but each 
location has different contribution of DHF 
case ( sδ ). Assumed that 0β  is flat 
distribution, the pβ is normal distribution with 

zero mean, and βτ  is precision parameter of 

pβ [29]. 
 
3.2.Likelihood, Joint Prior, and Joint   
   Posterior 
The parameters of BMZIP S-T are estimated 
via its FCD respectively. Let 

0{ , , , , , , , , , }p s s s u vu v β αβ β α δ τ τ τ τ=λ  is 
parameters vector of BMZIP S-T. The joint 
posterior as basis for obtaining the FCD is 
multiplication of likelihood and joint prior. 
The likelihood of BMZIP S-T, is defined 
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( )
1

1 1

P(Ir) exp
( ,..., ) ,

!

styT S st
t St

stt s

A
l y y B

y= =

    = ×  
 

∏ ∏λ     (6) 

where     

0
1

P
p pst st s z

p
A x tβ β

=
= + + Ξ + Φ∑

( )
1 1

exp P(Ir) exp
T S

st
t s

B A
= =

  
 = −     
∑∑ .   

Meanwhile, a joint prior is 
0( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).
p s u s v

s u v

J p p p p u p v

p p p p p p
β α

δ α δ β

β β τ α τ τ τ

δ τ τ τ τ τ τ

=λ  (7) 

All priors distribution of (7) are an 
informative priors because they are obtained 
from various researchers, for example in 
[7,32]. Priors distribution ( 0( )p β , ( )pp β ,

( )p α , ( )sp u , ( )sp v , ( )sp δ ) are normal 
distribution respectively, whereas the hyper 
priors ( ( )p βτ , ( )p ατ , ( )up τ , ( )vp τ , ( )p δτ ) are 
Gamma distribution respectively. The 
structure of joint Posterior is arranged by 
Definition 3.1. 
 
Definition 3.1. (Posterior Distribution). 
Suppose ( )l yλ  is likelihood function and 

( )J λ  is joint prior, then posterior 
distribution is defined 

( ) ( )
( ) ( ) ( ,

( ) ( )p

l J
J l J

l J d
Ω

= ∝
∫
λ

yλ λ
λ y y λ λ

yλ λ λ

with 

( ) ( )l J d
Ω
∫
λ

yλ λ λ  is normalize constant.   

 
Based on the Definition 3.1, likelihood (6), 

and joint prior (7), then posterior distribution 
of BMZIP S-T is written as  

( )
1

1 1

P(Ir) exp
( ,..., ) ,

!

styT S st
t St

stt s

A
Jp y y C D

y= =

    ∝ × ×  
 

∏ ∏λ
 (8) 

where ( )
1 1

exp P(Ir) exp ,
T S

st
t s

C A
= =

 
= − 

  
∑∑  

0( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).
p s u s v s

u v

D p p p p u p v p

p p p p p
β α δ

α δ β

β β τ α τ τ τ δ τ

τ τ τ τ τ

=

 
   
4.Conclusion and Future Research 
This paper has been constructing the 
posterior distribution of the model BMZIP 
S-T model (8). Further research is to find a 
full conditional distribution of the model 
based on the posterior distribution. The full 
conditional distribution is used for estimating 
the parameters of the model in WinBUGS.  
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