
Improving conflict resolution in version spaces for precision
agriculture

ADRIAN GROZA
Technical University of Cluj-Napoca

Department of Computer Science
Memorandumului , 400028 Cluj-Napoca

ROMANIA
Adrian.Groza@cs.utcluj.ro

IULIA UNGUR
Technical University of Cluj-Napoca

Department of Computer Science
Memorandumului 28, Cluj-Napoca

ROMANIA
Iulia.Ungur@isg.cs.utcluj.ro

Abstract: We developed a plant monitoring system that uses machine learning to classify environment conditions
as favorable or not for plant development. The decision is taken based on six features whose values are measured
from sensors: light, temperature, vibrations, soil humidity, rain quantity and vertical distance. Aiming to assure
transparency in the classification decision, we used a modified version of the version space algorithm. We adapted
the version space algorithm to deal with situations when hypotheses do not agree on a single decision. As a result,
20% from the instances unclassified by the version space were classified by our enhanced version space algorithm.
The developed tool is available online as an open-source project.

Key–Words: Precision agriculture, Knowledge in learning, Version space algorithm, Sensor-based reasoning

1 Introduction

A version space is the set L of all classifiers (hy-
potheses) expressible in a language that correctly clas-
sify a dataset. Version space algorithm is based on
candidate-elimination techniques. At each step, hy-
potheses inconsistent with the training examples are
removed from the version space. Two boundary sets
are used: S for specific hypotheses and G for general
ones. Initially G ≡ > and S ≡⊥. With each training
example, S is generalised and G is specialised.

For each classifier gi ∈ G and si ∈ S , the new
example may be a false positive or a false negative.
There are four situations: First, false positive for si
means that si is too general. With no consistent spe-
cializations of si (by definition), the hypothesis si is
removed from S. Second, false negative for si means
that si is too specific. Hence, si is replaced by all its
immediate generalizations, given that they are more
specific than some member of G. Third, false positive
for gi means that gi is too general. Hence, gi is re-
placed by all its immediate specializations, provided
they are more general than some member of S. Forth,
false negative for gi means gi is too specific, but there
are no consistent generalizations of gi (by definition).
Consequently, gi is removed from G.

These four operations are repeated for each new
example, until one of three things happens: First, at
the end of the training, only one hypothesis may re-
main in the version space L [2]. This hypothesis will

be used to classify unlabeled instances. Second, the
version space L collapses. That is, either S or G be-
comes empty, meaning that there are no consistent hy-
potheses for the current training set. Third, at the end
of the training, several hypotheses may remain in the
version space. This means the version space repre-
sents a disjunction of classifiers.

Our focus here is on this third situation when
more than one learner l ∈ L remains to classify un-
labeled data. For any new example, if all classifiers
agree, the algorithm returns the classification. If the
classifiers disagree, a conflict resolution strategy is
employed. One common option is to apply the ma-
jority vote. Instead of majority voting, we propose a
conflict resolution method that exploits the white-box
model of the version space learning algorithm.

Version space provides a hierarchical representa-
tion of the knowledge accumulated. Its advantages
include speed of computation (close to linear) and
the ability to describe all possible hypotheses on the
learning examples given that the data is correct and
consistent [7]. Its main constraint is that the training
set should be consistent. This limitation restricts the
usage of version spaces in real life scenarios charac-
terised by noisy, continuous or inconsistent data.

Hence, our goals here are twofolds: 1) to identify
and validate a conflict resolution method for version
spaces, respectively 2) to enhance version spaces for
real-life applications characterised by noisy, continu-
ous or inconsistent data.

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 26 Volume 3, 2018

2 Running Scenario

Plant survival represents an important issue on sus-
tainability due to the constant change of environment
features. This change represents a source of noisy,
continuous and, in certain cases, inconsistent data.

We developed a device, which can detect and reg-
ister the mean variables from its surroundings such
as light, temperature, vibrations, soil humidity, rain
quantity and vertical distance. This data is presented
in its raw form to an online platform that classifies it
in certain classes of abstraction, converts it in applica-
tion models - as sensors for the environment features
and predictions for learning sequences and analyzed
examples, as then to proceed with the version space
creation1.

For a better understanding of the algorithm and its
results, two major features have been developed: 1)
manual insertion of environment data and 2) hypothe-
ses sets viewing. These features allow for an in depth
analysis of the data and an accurate measurement for
the actual improvement that we brought to the algo-
rithm.

The process begins with a classification of the raw
data. Based on a set of sensors, the device registers
data and creates a mean of the last n entries. The n
value is set within the device through a potentiometer
(between 30 seconds and 2 hours). Once the mean for
each variable has been created, it is transmitted via di-
rect connection to the interface where, each variable
is classified using a fuzzy membership function. The
function calculates the degrees to which the measured
value belong to predifined fuzzy set. If a value is con-
tained in two fuzzy sets max is applied between the
values.

In the next step, we apply machine learning based
on the version space algorithm. The analysis begins
by constructing the hypotheses sets. Each hypothe-
ses S and G is constructed following exactly the rules
of the version space algorithm (further details in the
next section). Since a form of quantification is needed
to determine which feature is more important than the
other, feature selection methods are used to compute a
score. This score is based on the frequency of which
the feature influences the final outcome of the predic-
tion - if a change brought in the temperature caused the
plant to die within a short period of time, the temper-
ature will have a higher feature score on its influence.

Next, the matching degree between the sets and
the prediction is computed. That is the the degree
of which the current instance matches the hypotheses

1The system is available at https://plant-
predictor.herokuapp.com/. The interested user can obtain the
source code from https://github.com/IuliaUngur/plant-predictor.

Figure 1: Data discretisation using fuzzification.

sets. We have a match if a feature value varies in a
range of 30% from the sets feature value times the fea-
ture’s influence. This operation was useful to reduce
the degree to which the sets are changing during the
learning phase.

With this degree computed, the classical version
space algorithm takes a decision: favorable conditions
(⊕), unfavorable () or uncertain (�). If the assigned
label is uncertain, we apply our generalised version
space method, aiming to reduce the number of in-
stances which remain unclassified by the classical ver-
sion space algorithm.

3 Improving the version space algo-
rithm

3.1 Data discretisation

We apply a simple method for discretisation based
on fuzzification [10]. We calculate the member-
ship of sensor data to a predefined class. For
example, the temperature sensor returning a value
X ∈ [−40, 120](◦C) will be asserted to the fol-
lowing classes Freeze, Cold, Cool, Warm, Hot.
The domain is given by the sensor specifications.
That is in our case T0 = −40, T7 = +120
(Fig. 1). Based on the specific membership func-
tion (trapezoid or triangle), each sensor reading is at-
tached a class based on max(X0...Xi), where i ∈
[Freeze, Cold, Cool,Warm,Hot] and Xi ∈ [0, 1].

3.2 Hypotheses construction

Version space algorithm is a machine learning ap-
proach that uses inductive concepts to make assump-
tions based on training set. This concept represents
the version space hypotheses set H, which includes
both the specific S and general G hypotheses. An hy-
pothesis h ∈ H is a conjunction of constraints on the
features of the training set. Each hypothesis needs to
be consistent with all examples from the training set.

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 27 Volume 3, 2018

Each positive instance represents a favorable sur-
vival condition for the plant. The specific hypotheses
set S is initialized by the first positive example in the
training set. Hypothesis inconsistent with the positive
example are removed from G (line 5 in Algorithm 1).
Inconsistency occurs when a classifier in G returns a
different classification decision with the positive ex-
ample. Likewise, S is generalized to include the ex-
ample. That is, hypothesis that classify the example
as negative are removed from S and replaced by the
minimal generalization that satisfy the condition (line
11 in Algorithm 1).

Each negative example represents an unfavorable
condition for plant survival. The hypothesis from S
that classify the example as being positive are elimi-
nated and G is specialized to exclude the negative ex-
ample. No hypothesis from G should be more specific
than any classifier from S. To ensure that the sets are
consistent with one another, non-minimal hypotheses
are removed from G (line 20 in Algorithm 1).

Algorithm 1: Hypotheses Construction.
Input: P - set of training examples;
Output: G - set of general hypotheses;

S - set of specific hypotheses;
1 G ← >
2 foreach p ∈ P do
3 if p = positive example then
4 if G(p) = negative example then
5 G ← eliminate(G(p))
6 foreach s ∈ S do
7 if s(p) = negative example then
8 gs← generalize(s(p));
9 if gs /∈ G then

10 s← gs

11 eliminate(S, minimal)

12 else
13 if S(p) = positive example then
14 S ← eliminate(S(p))
15 foreach g ∈ G do
16 if g(p) = positive example then
17 sg ← specialize(g(p));
18 if sg /∈ S then
19 g ← sg

20 eliminate(G, maximal)

3.3 Feature selection

The relevance of each attribute in the training set is
given by the influence that it has in deciding the label.
If a feature value influences drastically the outcome of
the plant, that attribute will have a much higher score
than the rest of the attributes. For instance, in our sce-
nario, a value of 55◦C for temperature will rise a neg-
ative label no matter the values of the other features.

Feature selection techniques are grouped roughly
into three categories: wrappers, embedded methods
and filters [4]. Wrapper methods perform a classifi-
cation using the features selected as relevant and then
evaluate the classification. Embedded methods intro-
duce a penalty to reduce the level of variation of a
model. That is, adding extra bias to regularize the
overall cost. Filter methods select a subset of features
based on a certain threshold. That is, filter methods
rely only on the characteristics of the training set and
they are not influenced by the learning algorithm used.
One such filter method is the information gain of an at-
tribute which returns the quantity of information that
a feature holds considering the result. It measures the
difference in information between the cases when the
value of an attribute is known against the cases when
it is unknown. Information gain is the method used in
our experiments for feature selection.

3.4 Example analysis

We compute the levels of matching between the lat-
est prediction received, that doesn’t have a result at-
tached, and each of the hypotheses sets S ∈ H and
G ∈ H. These levels are calculated given the features
inclusion in the given hypothesis. For each hypothe-
sis h ∈ H we compute to what degree the value of
the prediction feature Xi diverges from the hypothesis
feature hi. This degree is calculated as the value of
the prediction feature taking into consideration its in-
fluence - given the total attribute score received from
the information gain feature selection, and an error of
30% (lines 4-9 in Algorithm 2).

To reduce the number of possible hypotheses cre-
ated considering a consistent training set, we added
the error margin to avoid situations in which very sim-
ilar values are added to the version space. Otherwise,
considering a number of five classes for each sensor,
with a total of six sensors in the application, the num-
ber of distinct instances would have been 56 = 15625,
the number of distinct concepts 25

6
, and thus a total of

22
15625

hypotheses in the version space.
After the matching valuesMS andMG for each

of the hypotheses sets S and G have been computed,
they are analyzed together. Since both levels have to

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 28 Volume 3, 2018

be consistent with one another, any sign of inconsis-
tency (between 45% − 65%) will be considered as
an uncertain outcome for which, an uncertain out-
come analysis will be computed (lines 17-20 in Al-
gorithm 2).

Algorithm 2: Analyzing example based on
hypotheses sets.

Input: P - training set;
S - set of specific hypotheses;
G - set of general hypotheses;
x - example to be analyzed;

Output: U - set of uncertain combinations
with success rate;
l - label for instance x;

1 Scores← FeatureSelector.(P))
2 foreach s ∈ S do
3 foreach attribute a ∈ X do
4 if sa − xa < 0.3% ∗ Scores(a) ∗ xa

then
5 matches S � add match(a);

6 MS ← matchingPercentage(matches S)
7 foreach g ∈ G do
8 foreach attribute a ∈ x do
9 if ga − xa < 0.3 ∗ Scores(a) ∗ xa

then
10 matches G� add match(a);

11 MG←
matchingPercentage(matches G)

12 if MS ∧MG < 0.45 then
13 l = 	
14 else
15 if MS ∧MG > 0.65 then
16 l = ⊕
17 else
18 analyzer ←

AnalyzeUncertainOutcome
19 r ← analyzer.result
20 U ← analyzer.uncertainSet

3.5 Handle uncertain instances

Uncertainty appears when either the prediction to be
analyzed matched only one of the version space hy-
potheses or if the degree with which it matches barely
is of any significance. We combine the hypotheses

with prediction, generating all valid possibilities and
voting for a final result based on the degrees of truth-
fulness of the combinations.

The analysis starts by extracting the average val-
ues from the instances predicted as favorable for plant
development. Then we construct all the valid combi-
nations between the sets and the current instance x.
If a prediction contains features that already match on
the sets, they will be kept further on. Thus only differ-
ent features are combined with the matching features
from the hypotheses setHwhen constructing the com-
binations.

The difference between the sets is computed, ob-
tainingH\x and x\H, where x is the instance that is
being analyzed, andH is either one of the constructed
hypotheses sets. Using the intersection x∩H the base
of each combination in constructed. If x contains a
feature that is noted as null in the hypotheses set, it
will be merged in the base combination construction,
as seen in Table 1. Using this base and the remaining
features of the prediction that have not already been
included, we construct all combinations resulting in
new prediction sets. For each prediction constructed
we compute the levels of matching with the initial hy-
potheses sets, but taking into consideration the aver-
age values as well.

For instance, combination C1 is created as fol-
lows. The common values between S and P are tem-
perature (HOT) and humidity (33%). The value for
the light attribute is null in the set S , so the value
Light = DARK will be kept in the construction
of the combinations. The remaining three features
Distance, Rain, V ibration whose values do not co-
incide with those of hypothesis S are used to com-
plete the combinations. Each occurring value is used
and permuted to have full coverage of the possibili-
ties. Then, the combination will be reintroduced in
the system and analyzed. If the result is above 50%,
the example x is considered favorable for plant devel-
opment. Otherwise x is labeled as a negative example
with a percentage of (50 − x) ∗ 2. If the prediction
matches exactly 50%, example x remains unlabeled.

Final phase represents the voting process, in
which the maximum value is computed from each
combination result from both positive and negative
outcomes (line 16 in Algorihm 3). If the value of
the calculated maximum is a positive outcome and the
level of uncertainty is low, then the label will be pos-
itive (lines 18-19). The process for the negative result
is the same: if the uncertainty level is low, the predic-
tion will have a negative outcome (lines 21-22). If the
uncertainty is high, the decision cannot be taken (line
24), and the example remains unclassified .

Finally, the uncertain set is allocated with the

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 29 Volume 3, 2018

Table 1: Uncertain combinations.

Op Temperature Light Dist. Rain Humidity Vibration
P Hot Dark Close Condense 33% 22%
S Hot null Nearby Dry 33% 33%
S \ P null null Nearby Dry null 33%
P \ S null Dark Close Condense null 22%
S ∩ P Hot null null null 33% null

Temperature Light Dist. Rain Humidity Vibration Label
C1 Hot Dark Nearby Dry 33% 33% �
C2 Hot Dark Nearby Dry 33% 22% �
C3 Hot Dark Nearby Condense 33% 33% �
C4 Hot Dark Nearby Condense 33% 22% �
C5 Hot Dark Close Dry 33% 33% �
C6 Hot Dark Close Dry 33% 22% �
C7 Hot Dark Close Condense 33% 33% �
C8 Hot Dark Close Condense 33% 22% �

valid hypotheses and example combinations that have
attached the computed result.

4 System architecture

Our plant monitoring systems works in two operating
modes: simulation and live. Simulation mode is used
to test our modified version space algorithm. In this
mode, the training set is provided from the user. Live
mode continuously read measurements from the Ar-
duino sensors. The hardware writes in a JSON file
every m minutes, m being set from a potentiometer
directly on the device. The minimum time is set to
30 seconds. The front end component performs a re-
quest and if the server discovers that a change has been
made, it processes the set and passes it through the al-
gorithm. Once the device is connected and functional,
it waits the start signal from the user given by a remote
control. Within a given time, established by the user
on a potentiometer ranging from 30 seconds up to 2
hours, the device records the sensor values and com-
putes their mean. Only this mean value is send to the
server, to ensure debouncing of the signals.

The front end has been implemented in React.js
using the concept of components and states to cre-
ate a dynamic interface. A DOM is created every
time a new rendering operation of the component is
requested. React creates a backup of the previous ren-
dered DOM called virtual DOM, compares the two
and re-renders only that components that are different.
The server is implemented in Ruby with the RubyOn-

Rails framework. Each time a request from the user is
made, the server retrieves from a PostgreSQL database
the desired information in a response format which
will be handled by the React component.

The hardware component is developed using a Ar-
duino UNO board, six sensors each representing the
environment variables and an IR Remote used for ac-
tivating the process. The Arduino component has been
developed using the Arduino IDE and the JSON writ-
ing for transmitting the data to the server has been im-
plemented using Processing.

Figure 2 depicts the hardware implementation in
Arduino. The temperature sensor senses the temper-
ature between the range of −40◦C and 125◦C with
an offset of 0.5◦C. The raindrops component detects
water that completes the leads on the board. The wet-
ter the board the more current will be conducted. The
light component uses the amount of light detected to
determine how much current to pass through the cir-
cuit. For the humidity module, water in the soil means
better conductivity between the pads, resulting in a
lower resistance and a higher reading. To compute the
distance, the system sends out a burst of ultrasound
and listens for the echo when it bounces off of an ob-
ject. It detects 3-400 cm in front of the sensor. For the
vibration component, when the sensor moves back and
forth, a certain voltage will be created by the voltage
comparator inside of it.

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 30 Volume 3, 2018

Figure 2: Electrical schema for the hardware components.

5 Running experiments

For training the device we used the szeged-weather
dataset2. Since the data contain registering values
everyday from 2006 till 2016, a sorting method was
needed. We selected the first day of each month at
8:00am, while only the relevant features were kept.
Analyzing average survival conditions of plants, we
established that any value lower than 5◦C or higher
than 35◦C for temperature will cause the plant to die,
as well as abundant rain or constant vibrations. A sam-
ple of the learning data is depicted in Table 2.

The results in Figure 3 were obtained by varying
the training set from 100 to 1000 instances. The test
set contains 100 instances. The results on the tests
showed that the algorithm can detect favorable condi-
tions in more than 90% of the cases, but only 30% in
case of unfavorable conditions. The improvement in
reclassifying instances that the classical version space
algorithm fail to label is 20%.

6 Related work

Our conceptual problem was the classification deci-
sion in case that version spaces contained more than
one classifier after all instances have been analyzed.

Sghair et al have proposed in [3] an algorithm for

2The dataset is available at
https://www.kaggle.com/budincsevity/szeged-weather

Figure 3: Running experiments.

automatic detection of plant diseases. The classifica-
tion is based on image processing to collect data for
training. In our case, data is obtained from sensors.

Incremental version space [5] merging algorithm
consists of each instance and all its classifiers defined
as a version space. The intersection of version spaces
corresponds to the union off all instances in the data
set [7]. Therefore the problem is, which is the classi-
fication decision when the intersection is empty?

Generalizing version space with incremental
merging allows version spaces to contain arbitrary sets
of classifiers as long as they can be represented by
boundary sets. Considering and keeping track of a
set of candidate classifiers, not explicitly enumerated
and maintained, allows 1st example to be negative and

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 31 Volume 3, 2018

Algorithm 3: Computing labels for uncer-
tain instances.

Input: Scores - feature relevance;
S ⊂ H - set of specific hypotheses;
G ⊂ H - set of general hypotheses;
x - example to be classified;

Output: l - computed label for x;
1 foreach h ∈ H do
2 foreach set ∈ h do
3 DS set← set \ X
4 DX set← X \ set
5 I ← set ∩ X
6 foreach attr ∈ set do
7 if set(attr) = empty then
8 I � DX (attr)
9 DX ←

eliminate(DX (attr))

10 C ←
generate combinations(DS, I)

11 foreach c ∈ C do
12 foreach attr ∈ X do
13 if c(attr) \X(attr) <

0.3 ∗ Scores(attr) ∗ X (attr) then
14 matches c� add match(attr);

15 c←
matching procentage(matches c);

16 max←
maximum(vg(C(⊕)), avg(C()));

17 uncertainty ←
calc(avg(C(⊕)), avg(C()));

18 if max = ⊕ ∧ uncertainty = low then
19 l← ⊕
20 else
21 if max = 	 ∧ uncertainty = low then
22 l← 	
23 else
24 l← �

does not require the single-representation trick - that is
for each instance there is a classifier that defines solely
that instance [5]. Hong and Tseng [6] have proposed
a system that handles exactly this: making trade-offs
when choosing what examples to include in the learn-
ing phase. They present a similar method to the hereby
present - the most consistent instances are stored in
the hypotheses and a count score is assigned to each
instance. With a higher count in a hypothesis comes
more inclusion or exclusion of a positive or negative
training example. This count is called factor of includ-
ing positive instances and ranges from 1 if the desire
is to include positive examples and 0 to exclude them.

Herbrich et al have analysed in [8] the generaliza-
tion error bound of classifiers within the version space.
That is, classifiers ability to generalize an instance. In
the same line, Sebag [9] controls the consistency and
specificity of the classification of instances by delay-
ing the search biases. Version Space being limited
in computational aspects, they handle numerical at-
tributes without discretisation - same aspect covered
in our approach leaving vibration and humidity as per-
centages throughout the analyzing phase- and to elim-
inate the need for specific biases, this allowing noisy
examples to be successfully handled.

Contiu and Groza in [1] have retrieved informa-
tion from different sources to classify crops. They
combine expert knowledge and supervised learning
to classify crops into soybean, corn, cotton and rice.
Ensemble learning is employed, where the ensemble
contains a neural network, a decision tree and a sup-
port vector machine. In case of disagreement between
learners, argumentation is used for conflict resolution.
The features used for classification include green level
moisture and NDV i. NDV i stands for Normalized
Difference Vegetation index and is calculated using
NDV i = (NIR−Red)/(NIR+Red), where NIR
is the near infrared bands and Red the red bands.
NDV i is a indicator of how much land is in use and
what changes appear. The conceptual research relates
to conflict resolution in ensemble learning, resulting
in argumentation reasoning. The system exploits both
logic-based artificial intelligence and statistical learn-
ing. Expert knowledge is encapsulated within a rule-
based system using Defeasible Logic Programming.
Contiu and Groza have used features extracted from
satellite images. Differently, our features are obtained
from local sensors. After learning, Contiu and Groza
have extracted knowledge in form of defeasible rules,
aiming to increase transparency in the decision. Our
version space algorithm also provides transparency, as
the sets G and S can be translated into rules.

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 32 Volume 3, 2018

Table 2: Sample learning data set.

Light Temperature Vibration Humidity Rain Distance Label
Clear 5 21 77 Drizzle 11 	
Clear 1 9 81 Flood 9 	
Clear 1 16 74 Drizzle 10 	
Clear 18 22 55 Drizzle 11 ⊕
Fog 16 17 64 Drizzle 11 	
Clear 16 4 56 Drizzle 11 ⊕
Fog 20 12 86 Drizzle 11 	
Clear 32 8 38 Drizzle 10 	

7 Conclusions

We developed a plant monitoring system that uses ma-
chine learning to classify environment conditions as
favorable or not for plant development. The decision
is taken based on six features whose values are mea-
sured directly from sensors: light, temperature, vi-
brations, soil humidity, rain quantity and vertical dis-
tance. We adapted the version space algorithm to deal
situations when hypotheses do not agree on a single
decision. We used fuzzication such that the algorithm
to handle inconsistent data or data with error measure-
ments. These makes our method adequate for realistic
scenarios.

Acknowledgements: The results presented in this pa-
per were obtained with the support of the Technical
University of Cluj-Napoca through the research grant
no. 1996/12.07.2017, Internal Competition CICDI-
2017.

References:

[1] Stefan Coniu and Adrian Groza. Improv-
ing remote sensing crop classification by
argumentation-based conflict resolution in en-
semble learning. Expert Systems with Applica-
tions, 64:269–286, 2016.

[2] Luc De Raedt and Stefan Kramer. The level-
wise version space algorithm and its application
to molecular fragment finding. Proceedings of
the 17th International Joint Conference on Ar-
tificial Intelligence - Volume 2, pages 853–859,
2001.

[3] MOSBAH EL SGHAIR, RAKA JOVANOVIC,
and MILAN TUBA. An algorithm for plant dis-
eases detection based on color features.

[4] Isabelle Guyon, Steve Gunn, Masoud Nikravesh,
and Lotfi A. Zadeh. Feature Extraction: Founda-
tions and Applications (Studies in Fuzziness and
Soft Computing). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[5] H. Haym. Generalizing version spaces. Machine
Learning, 17(1):5–46, 1994.

[6] T. P. Hong and S. S. Tseng. A generalized ver-
sion space learning algorithm for noisy and un-
certain data. IEEE Transactions on Knowledge
and Data Engineering, 9(2):336–340, 1997.

[7] T.M. Mitchell. Version Spaces: An Approach to
Concept Learning. Ph.D. thesis, Stanford Uni-
versity, 1978.

[8] Herbrich Ralf, Graepel Thore, and
Williamson Robert C. The Structure of
Version Space, pages 257–273. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[9] Michle Sebag. Delaying the choice of bias:
A disjunctive version space approach. In Pro-
ceedings of the 13 th International Conference
on Machine Learning, pages 444–452. Morgan
Kaufmann, 1996.

[10] C. H. Wang, T. P. Hong, and S. S. Tseng. In-
ductive learning from fuzzy examples. Proceed-
ings of the Fifth IEEE International Conference
on Fuzzy Systems, 1:13–18, 1996.

Adrian Groza, Iulia Ungur
International Journal of Agricultural Science

http://iaras.org/iaras/journals/ijas

ISSN: 2367-9026 33 Volume 3, 2018

