
Abstract: Foucault discovered, that a coordinate system, that describes nature adequately, cannot rotate in an ar-
bitrary manner. Similarly, Einstein and the International Astronomical Union (IAU) searched for the translatory
motion of the coordinate systems that describe nature adequately. Indeed, the IAU proclaimed the problem of find-
ing adequate coordinate systems. Such a coordinate system is very useful in space navigation, geoinformatics, and
the prediction of physical properties. Such natural coordinates are tools that describe space and time in an adequate
and predictive manner. The natural coordinates are discovered here by two independent methods: observation and
derivation. Moreover, natural coordinates are tools that imply quanta, gravity, and essential properties of time.
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1 Introduction
Space flight is essential for the exploration of space,
celestial bodies, planets and Earth, see e. g. Lav-
ery (1972); Starker et al. (1985); Soffel (2003); Riess
(2022). Thereby, space navigation is an important
tool, see e. g. Ashby (2003); Formichella et al. (2021).
For it, the synchronization of clocks is basic for the
measurement of the light travel distance, see Zogg
(2009); Condon and Mathews (2018). For that pur-
pose, time dilation, see Einstein (1905, 1915), and
a ’nature describing coordinate system’, see Einstein
(1916), or an ’adequate coordinate system (ACS)’
are foundational, see the International Astronomical
Union (IAU) Soffel (2003), Carmesin (2025e,c).

In this paper, the problem of finding an ACS (see
section 2) is presented first. Secondly, three solutions
are progressively derived: an empirical solution (see
section 3), a general classical solution (see sections
4 and 4.3), and four emergent solutions (see sections
6, 7, 8, 9). Thirdly, structuring applications to geoin-
formatics and to the Artemis Moon mission are elabo-
rated (see sections 11 and 12). Fourthly, the results are
concluded and critically discussed (see section 14).

The structure of the paths of derivation in this pa-
per are illustrated in Fig. (20).

2 Problem of finding an adequate co-
ordinate system for space and time

2.1 First foundation of an ACS

Already in ancient times, the question arose, whether
Earth or Sun is in the center of our planetary sys-
tem, see Hoskin (1999), Aristarchos (270). Today,
geometrical, mechanical and optical empirical evi-
dence shows that Sun is at the center, see Galileo
(1638), Sardin (2001), Foucault (1851). Accordingly,
since ancient times, the world has been described with
help of numbers and coordinate systems, as mathe-
matical tools, see Hoskin (1999), Archimedes (1897),
Aristarchos (270). Correspondingly, the question
arose whether the coordinate system that describes na-
ture adequately moves with Earth, or whether it moves
with Sun.

Here and in the following, the coordinate system
that describes nature adequately is called adequate co-
ordinate system (ACS). Thereby, the name ’coordi-
nate system that describes nature’ has been used by
Einstein in modern times, see Einstein (1916), and
the name ’adequate coordinate system’ has been used
by the IAU in modern times, see Soffel (2003). Both
names mean the same.

The first mechanical and empirical foundation of
an essential property of an ACS has been provided by
Foucault with his pendulum, see Foucault (1851) and
Fig. (1): The plane in which a Foucault pendulum
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Figure 1: A Foucault pendulum in the Pantheon in
Paris.

swings at Earth’s north pole is at rest relative to an in-
ertial coordinate system, according to Galileo’s prin-
ciple of inertia, see Galileo (1638), Newton (1687),
Landau and Lifschitz (1960). Consequently, an ACS
does not rotate around Earth’s axis relative to such
a Foucault pendulum. Therefore, for each ACS near
Earth, that Foucault pendulum determines the angular
frequency of the rotation around Earth’s axis.

2.2 Proposed coordinate system

Einstein proposed that all conceivable coordinate sys-
tems should be regarded as equivalent for the descrip-
tion of nature, see Einstein (1916), p. 776, lines 5-
17: 1 ’The only possibility is to assume that all con-
ceivable coordinate systems can be used for the de-
scription of nature with equal legitimation, in princi-
ple. This means the following requirement: The gen-
eral laws of nature must be expressed by equations,
that hold for all coordinate systems, i. e. that are

1’Es bleibt daher nichts anderes übrig, als alle denkbaren Ko-
ordinatensysteme als für die Naturbeschreibung prinzipiell gle-
ichberechtigt anzusehen. Dies kommt auf die Forderung hin-
aus: Die allgemeinen Naturgesetze sind durch Gleichungen
auszudrücken, die für alle Koordinatensysteme gelten, d. h. die
beliebigen Substitutionen gegenüber kovariant (allgemein kovari-
ant) sind. Es ist klar, dass eine Physik, welche diesem Postulat
genügt, dem allgemeinen Relativitätspostulat gerecht wird. Denn
in allen Substitutionen sind jedenfalls auch diejenigen enthalten,
welche allen Relativbewegungen der (dreidimensionalen) Koor-
dinatensysteme entsprechen.’ See (Einstein, 1916, p. 776, lines
5-17).

covariant with respect to arbitrary substitutions. It
is clear that a physical science that fulfills this pos-
tulate, obeys the postulate of general relativity. As
all substitutions include all relative motions of three-
dimensional coordinate systems.’ See (Einstein, 1916,
p. 776, lines 5-17).

This proposal is very idealized, as Foucault did
already provide a founded restriction for a coordi-
nate system that describes nature, see Foucault (1851),
Shech (2023), Song (2002). Accordingly, this pro-
posal is hardly sufficient for space navigation, see sec-
tion (2.3). As a consequence, the problem proposed
by the IAU is essential, to find an ACS that is useful
for space navigation, see Soffel (2003).

2.3 Insufficiency of the proposed coordinate
system for space navigation

The IAU realized that the coordinate system proposed
by present - day relativity theory is insufficient for
space navigation. Accordingly, the IAU proposed
the ’problem of defining a useful and adequate co-
ordinate system in astronomy’, see Soffel (2003), p.
2688, column 2, lines 7-8. For the communication in
the physics community, this problem has alternatively
been called ’frame problem’, see Carmesin (2025e).

2.4 Efficient summary of time dilation

In this section, the equation of time dilation of gen-
eral relativity theory (GRT) is derived. This includes
the equation of kinematic time dilation of special rel-
ativity theory (SRT). Thereby, that equation is derived
progressively for various useful cases and in corre-
sponding forms. In particular, that equation is derived
for the case of a relatively slow (v/c � 1) clock C
in a relatively small absolute value of the potential
(2|Φ|/c2 � 1). Basically, that equation of time di-
lation is based on the scalar product that Einstein Ein-
stein (1916) proposed in his Eq. 3:

ds2 :=

i=3∑
i=0

j=3∑
j=0

gijdxidxj (1)

This is an invariant with respect to transformations of
the coordinate system. Hereby, the increment dx0 =
c · dt describes the distance that light propagates dur-
ing an increment dt, whereby dt describes a coordi-
nate time, describing a flat spacetime. Similarly, the
increments dx1, dx2 and dx3 describe the spatial co-
ordinates in a flat spacetime. Thereby, the numbers
gij are the elements of the metric tensor. Moreover, in
GRT, ds2 is a short notation for (ds)2, or dx2

j is a short
notation for (dxj)

2, see e. g. Hobson et al. (2006).
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Without loss of generality, we choose a locally
orthogonal coordinate system. As a consequence, the
scalar product in Eq. (1) has the following form

ds2 =

j=3∑
j=0

gjjdx
2
j = g00 · c2 ·dt2−

j=3∑
j=1

|gjj |dx2
j . (2)

In a typical analysis in GRT, a clock C is con-
sidered. In the coordinate system or reference sys-
tem of the clock C, the time increment measured by
the clock is named dτ , and the spatial increments are
zero, dξ1 = 0, dξ2 = 0 and dξ3 = 0. Consequently,
the scalar product ds2 is equal to c2dτ2,

ds2 = c2dτ2 in a clock′s coordinate system (3)

Of course, the usual GRT and SRT notation with τ for
a system with a clock is hardly specific by itself. The
notation can be made specific in a context.

As a further consequence, the squared time incre-
ment dτ2 in the coordinate system of a clock C in Eq.
(3) is transformed to the squared time increment dt2
in an external coordinate system (with respect to the
clock C) in Eq. (2) by using the invariance of ds2:

c2dτ2 = ds2 = g00 · c2 · dt2 −
j=3∑
j=1

|gjj |dx2
j . (4)

In order to solve for dτ2, the above Eq. is divided by
c2. Moreover, the above sum is multiplied by 1 = dt2

dt2
,

and
∑j=3

j=1 |gjj |dx2
j/dt

2 is identified with the squared
velocity of the clock C in the external coordinate sys-
tem. As a consequence, the squared time measured by
the clock C has the following form

dτ2 = dt2 ·

g00 −
j=3∑
j=1

|gjj |
dx2

j

dt2
1

c2


= dt2 ·

(
g00 −

v2

c2

)
. (5)

In order to solve for dτ , the square root is applied to
the above Eq.

dτ = dt ·
√
g00 −

v2

c2
. (6)

In the case v = 0, there remains the gravitational time
dilation:

dτgrav = dt · √g00 or
dτgrav − dt

dt
=
√
g00 − 1.

(7)

Equation of time dilation in SRT: In the particu-
lar case of a flat spacetime, the tensor element g00 is
one. As a consequence, the time dτ measured by a
considered clock C in Eq. (6) has the form

dτ = dt ·
√

1− v2

c2
, in flat spacetime. (8)

This term is identified with the equation of time di-
lation in special relativity theory, SRT, see Einstein
(1905), Hobson et al. (2006). Minkowski (1908) ex-
plained this fact by realizing that SRT describes a flat
spacetime, which is now called Minkowski space.

Equation of time dilation near a mass:
Schwarzschild Schwarzschild (1916) derived the
metric tensor elements gij that describe spacetime in
the vicinity of an uncharged and non-rotating mass
M . Thereby, at a coordinate distance r from M , the
element g00 is

g00 = 1− RS
r

with RS =
2GM

c2
(9)

Hereby, RS is named Schwarzschild radius, G is
Newton’s gravitational constant G = 6.674 30(15) ·
10−11 m3

kg·s2 , and c is the velocity of light in vacuum,
c = 299 792 458 m

s , see Navas et al. (2024).

Equation of time dilation at a potential: In New-
ton’s theory of gravitation, the gravitational potential
at a coordinate r is as follows2, see Karttunen et al.
(2007):

Φ(r) = −GM
r
. (10)

As a consequence, the tensor element g00 in Eq. (9)
as a function of the potential in Eq. (10) is

g00 = 1− 2|Φ|
c2

. (11)

As a consequence, the time dτ measured by a consid-
ered clock C in Eq. (6) has the form

dτ = dt ·
√

1− 2|Φ|
c2
− v2

c2
, near a mass. (12)

Equation for a slow clock in a small potential: In
this section, equation (12) of time dilation is analyzed
for a clockC that has a relatively small velocity v with

2This term has also been derived in an exact theory of gravity,
in which distances are determined according to the local curvature
of spacetime, see Carmesin (2025e).
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respect to the external coordinate system, and that is
in a relatively small absolute value of the potential |Φ|,

v

c
� 1, and

2|Φ|
c2
� 1. (13)

For instance, these conditions are fulfilled for vehicles
including space crafts that travel in our planetary sys-
tem, in the vicinity of Earth or on Earth. As a conse-
quence of the condition in Eq. (13), the root in equa-
tion (12) of time dilation can be expanded at linear
order, marked by =̇,

dτ=̇dt− dt · |Φ|
c2
− dt · v

2

2c2
. (14)

In equation (14) of time dilation, the subtrahends are
identified with the gravitational time difference dτgrav
and the kinematic time difference dτkin,

dτ=̇dt+ dτgrav + dτkin, with

dτgrav = −dt · |Φ|
c2
, and dτkin = −dt · v

2

2c2
. (15)

The above time increments are divided by the incre-
ment of the coordinate time dt,

dτ

dt
=̇1 + δτgrav,frac + δτkin,frac, with

δτgrav,frac = −|Φ|
c2

=
Φ

c2
, and

δτkin,frac = − v2

2c2
. (16)

Hereby, δτgrav,frac :=
dτgrav
dt and δτkin,frac := dτkin

dt
are called gravitational fractional time difference and
kinematic fractional time difference. The time differ-
ence and the fractional time difference are

δt = dτ − dt =⇒ δt

dt
=
dτ

dt
− 1 and

δτfrac :=
δt

dt
= δτgrav,frac + δτkin,frac. (17)

Next, these equations of time differences are applied
in order to derive the ACS.

2.5 Paradoxical nature of the proposed coor-
dinate system: twin paradox

In order to draw the attention to the question of a coor-
dinate system that describes space and time of nature
in an adequate manner, Langevin proposed the twin
paradox, Langevin (1911). This can be summarized
by the following scenario:

The twins Nele and Deike celebrate their 15th birth-
day. Nele travels for ∆tnele = 6 a, six years, with

a speed |~v| = v = 0.8 · c. Deike stays at Earth
at a place with a negligible gravity and velocity. If
the Earth Centered Inertial (ECI) coordinate system is
used, which is at rest at Earth and at a Foucault pendu-
lum at the north pole, then, Deike’s age increases by a
factor 5

3 faster than Nele’s age. Consequently, Deike’s
age increased by ∆tDeike = 5

3 · ∆tNele = 10 a, 10
years, according to Eq. (8).

However, according to the coordinate systems pro-
posed by Einstein (see section ), it should be equiv-
alent to choose a coordinate system that is at rest at
Nele’s spacecraft. In that coordinate system, Nele is at
rest, and Deike moves at the velocity |~v| = v = 0.8 ·c.
Consequently, in that coordinate system, Deike’s age
increased by ∆tDeike = 3

5 ·∆tNele = 3.6 a, 3.6 years,
according to Eq. (8).

As Deike’s age cannot increase by 3.6 years and by
10 years simultaneously, this result is paradox. This
paradox is called twin paradox. It is solved next in an
empirical manner.

Figure 2: Observation of time dilation: In the Space-
lab mission D1, a clock in the orbit has been compared
with a clock on the ground.

3 Empirical solution

A shuttle experiment has been performed on the
Spacelab mission D1, in order to investigate the gravi-
tational and kinematic time dilation or time difference,
see Starker et al. (1982), Starker et al. (1985) and Fig.
(2).

For it, the Spacelab traveled in a circular orbit
around Earth. Thereby, the Spacelab had the planned
altitude hSh = 325 km above the ground, see Starker
et al. (1982), figure 19. In a DFVLR (1985) Report,
the altitude hSh = 324 km is reported. In summary,

hSh = 324± 1 km (18)
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Figure 3: Observed fractional time difference
δτobs,frac =

∆τSh,obs−∆τGr,obs
∆τGr,obs

as a function of the
time ∆τGr,obs elapsed at the ground. As a result,
δτobs,frac is a negative constant.

The ground station was Oberpfaffenhofen. Its height
above sea level is HOber = 580(±20) m, see Starker
et al. (1982), figure 19. The uncertainty (±20), as
well as its latitude βOber = 48.0813889o are taken
from geographic maps. From it, the radial coordinate
is calculated, see Ashby (2003), Eq. (20):

r = a0 + a2x
2 + a4x

4 + a6x
6 + a8x

8, with
x = sin(90o − βOber), and

a0 = 6356742.025; a2 = 21353.642;
a4 = 39.832; a6 = 0.798; a8 = 0.003

thus, r = 6 366 280.658 m (19)

As a consequence, the orbital radius Rorbit is equal
to the above radius r of the ground station, plus the
height HOber, plus the height above the ground

Rorbit = r +HOber + hSh
= 6 690 280.658(±1020) m (20)

Consequently, the orbital velocity is

vorbit =

√
GME

Rorbit
= 7 718.745(±1)

m

s
, (21)

with GME = 3.986 004 418 · 1014 N·m2

kg .
In a clock experiment of the D1 mission, the

Spacelab had two atomic clocks onboard, a Cs-clock
and a Rb-clock. Equal clocks were placed on the
ground in Oberpfaffenhofen, Germany. The clocks
were compared by one-way and two-way methods,
see Starker et al. (1985).

3.1 Observation

First results showed that the onboard clocks exhibit an
observed fractional time difference compared to the
clocks on the ground, see figure 5 in Starker et al.
(1985) and figure (3):

δtobs,frac = δtobs,frac,Sh − δtobs,frac,Gr
= −2.968(±0.198) · 10−10 (22)

3.2 Derivation

In this section, the observation is compared with the
derived result. Hereby, the following ACS is used:
Firstly, an Earth centered ACS is used, as the IAU
recommended a Geocentric Celestial Reference Sys-
tem (GCRS) for space flight in Earth’s vicinity, see
Soffel (2003). Secondly, the ACS should not rotate
around Earth’s axis relative to the plane of a Foucault
pendulum at the north pole, according to Foucault’s
discovery, see Foucault (1851). Altogether, the Earth
Centered Inertial coordinate system (ECI) is used as
the ACS in a founded manner.

The fractional gravitational time difference at the
Shuttle is as follows:

δτgrav,frac,Sh : =̇− GME

c2Rorbit
= −6.629 06 (±0.000 97) · 10−10 (23)

The fractional kinematic time difference of the on-
board clocks is

δτkin,frac,Sh : =̇−
v2
orbit

2 · c2

= −3.314 53 (±0.000 49) · 10−10. (24)

At the ground, the angular frequency ωECI rela-
tive to the ECI is 2π divided by the sidereal day:

ωECI =
2π

86164.09 s
= 7.292 116 · 10−5 1

s
(25)

Consequently, at the ground station at the radius
r = 6366.280 km, the kinematic fractional time dif-
ference is

δτkin,frac,Gr=̇−
ω2
ECI · r2

2c2

= −1.199 186(±0.000 0076) · 10−12. (26)

At the ground, the fractional gravitational time differ-
ence is

δτgrav,frac,Gr : =̇− GME

c2 · r
= −6.967 034(±0.000 0178) · 10−10. (27)
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The derived fractional time difference of the time
at the shuttle minus the time at the ground is as fol-
lows:

δτderived,frac = δτkin,frac,Sh + δτgrav,frac,Sh
−(δτkin,frac,Gr + δτgrav,frac,Gr)

= −2.904 978(±0.001 508) · 10−10 (28)

This result is in precise accordance with observa-
tion within the errors of measurement, see Eq. (22).
This accordance confirms the theory that is formed by
the equations of relativity together with the used ACS,
the ECI.

3.3 Empirical solution of the twin paradox

The observation in Eq. (22) shows that there elapses
more time at the clock on the ground than at the clock
that moves above the ground. If this result is applied
to the twin paradox in section (2, part 2.5), then it is
predicted that there elapses more time at Deike’s clock
on the ground than at Nele’s clock that moves relative
to Earth’s ground in space.

Though the empirical observation at the Spacelab
in the D1 mission is very convincing, the observation
is a particular case only. Accordingly, a general so-
lution of the twin paradox would be essential in addi-
tion. This is derived in the next section (4).

Figure 4: Spacecraft with a fixed onboard clock.

4 General classical solution

4.1 Measurement of the ACS

In this section, for each point P , an ACS is identi-
fied. While the ACS is a physically based coordi-
nate system, an arbitrary conventional reference sys-
tem is used as a tool. Similarly, in order to express the
physically based absolute temperature with its Kelvin
Kelvin (1848) scale, the conventional Celsius scale is
used: zero Kelvin equals minus 273.15 degree Cel-
sius.

Conventional reference system: In general, each
point P can be located relative to one or more celestial
bodies. These celestial bodies are used as an arbitrary
conventional reference system, CS. Additionally, a
clock at the conventional reference system can be used

as a reference. Hereby, in general, P can move rela-
tive to the conventional reference system. As a nota-
tion, a velocity of a clock C relative to the system CS
is denoted by ~vC,CS , or ~vC for short, and a used coor-
dinate system is marked by an underlined subscript.

Measurement of the velocity of the ACS: In this
section, a method for the measurement of the velocity
~vACS of the ACS is presented. Thereby, that veloc-
ity ~vACS,CS is described relative to the conventional
reference system CS.

At each point P , the velocity ~vACS,CS of the ACS can
be measured as follows:

A spacecraft with an onboard clock C and a velocity
~vC is used (see Fig. 4). When the spacecraft is at rest
in the ACS, then the velocity ~vC of the clock is equal
to the velocity ~vACS,CS of the ACS:

~vC,CS − ~vACS,CS = 0, iff C is at rest in the ACS.
(29)

Hereby and as usual, iff abbreviates ’if and only if’.
The above equation is transformed equivalently by ap-
plication of the square and division by −2c2:

−
(~vC,CS − ~vACS,CS)2

2c2
= 0,

iff C is at rest in the ACS. (30)

Moreover, when the spacecraft is at rest in the ACS,
the law of kinematic time dilation holds, see Eq. (16)
and Fig. (5):

δτkin,frac =
−(~vC,CS − ~vACS,CS)2

2c2
= 0,

iff C is at rest in the ACS. (31)

In the above equation, the fraction is zero iff it takes
its maximal value δτkin,frac,max:

δτkin,frac = δτkin,frac,max = 0,
iff C is at rest in the ACS. (32)

The above equation and statement are used for the
measurement of ~vACS,CS as follows: For each point
P , a spacecraft, including another vehicle in a wider
sense, with an onboard clock C is used, see Fig. (4).
Thereby, the clock is at rest in the spacecraft. The
spacecraft is moved so that the observed kinematic
time difference of the clock C is maximal. This is
tested by a permanent comparison with a clock at the
conventional reference system. For it, a permanent ra-
dio transmission is used, whereby a possible Doppler
effect is corrected. Moreover, the velocity ~vC,CS is
measured (relative to the conventional reference sys-
tem).
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As a result, the spacecraft is at rest in the ACS.
Consequently, the measured velocity ~vC,CS provides
the velocity of the ACS (see Eq. 29):

~vACS,CS = ~vC,CS ,
as the clock C is at rest in the ACS. (33)

Altogether, this method can provide the ACS and its
velocity in general, for each point P in the universe.
More practical devices for that measurement are pre-
sented in Carmesin (2025e,f,g,h).

Figure 5: For each point P in the universe, and for
each clock C near P , the kinematic fractional time
difference δtkin,frac as a function of the speed vC,ACS
= |~vC,CS − ~vACS,CS | relative to the adequate coor-
dinate system ACS of P is shown. Everywhere in
the universe, the maximum of δtkin,frac is zero at
vC,ACS = 0, this holds when quantum fluctuations
are ignored.

Existence & velocity-uniqueness of the ACS: For
each point P , the quadratic equation in Eq. (31)
has exactly one solution. Therefore, for each P ,
there exists an ACS. Moreover, the measured veloc-
ity ~vACS,CS in Eq. (33) is uniquely determined, as
any velocity of the spacecraft different from ~vACS,CS
would cause a kinematic time difference that is not
maximal.

Therefore, the ACS exists and its velocity is deter-
mined in a unique manner.

Thus, the essential remaining question is: How can
the velocity of the ACS be predicted?

4.2 Derivation of the ACS

In this section, a prediction of the velocity of the ACS
is derived.

In general, at different points P1 and P2, the ACS has
different velocities ~vACS,CS(P1) 6= ~vACS,CS(P2).
Therefore, even a fully screened clock onboard a
spacecraft (see Fig. 4) must experience an interaction
caused by its surroundings. Only with help of such
an interaction, the clock can show the correct kine-
matic time difference, as this difference depends on
the velocity of the ACS, see Eq. (31). As a conse-
quence of the screening of the clock, the electromag-
netic interaction, the weak interaction, and the strong
interaction can be excluded, see Navas et al. (2024).
Consequently, the clock must experience the gravita-
tional interaction, which can be expressed in terms of
the local gravitational field ~G∗(~r). This vector field
represents a pattern. Accordingly, the velocity that
enters the equation of the kinematic time difference
in Eq. (31) is the velocity relative to this pattern of
the vector field ~G∗(~r). (Alternatively, gravity can be
expressed with help of curvature of spacetime or with
help of additional volume, see Carmesin (2025e).)

In general, the field is moving. And a screened
clock is at rest with all of its interaction with its sur-
roundings, iff the clock is at rest at the field. Cor-
respondingly, at each point P , the ACS is at rest at
that pattern of the vector field ~G∗(~r) at the point P , at
which the ACS is determined.

For instance, in the vicinity of Earth, the vec-
tor field ~G∗(~r) is at rest at the Earth Centered Iner-
tial frame (ECI). Consequently, near Earth, the ACS
is at rest at the ECI. This prediction has been con-
firmed by the Spacelab mission D1 in section (3) and
Starker et al. (1985). Moreover, this prediction has
been confirmed by other observations in space, see
Carmesin (2025d,e), and by an observation at Earth,
see Carmesin (2025c).

4.3 Universal zero of the kinematic time dif-
ference

In this section, an especially useful and insightful re-
sult is elaborated:

At each point P in the universe, there exists a measur-
able ACS with a measurable velocity ~vACS,CS .

Therefore, each clock C with its velocity ~vC,CS has
the following kinematic fractional time difference, see
Eq. (31):

δτkin,frac =
−(~vC,CS − ~vACS,CS)2

2c2
(34)

Therefore, at each P , there is the absolute zero of the
kinematic fractional time difference, δτkin,frac = 0.
It occurs for each clock C at P , that has the same
velocity as the ACS, ~vC,CS = ~vACS,CS . Thereby,
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~vACS,CS is a function of P : The ACS is at rest
at the local gravitational field at P . Accordingly,
~vACS,CS(P ) can be predicted, for more details see
Carmesin (2025e). As a consequence, ~vACS,CS can
be used for space navigation and for the synchroniza-
tion of clocks in a predictable manner. It is insightful
to realize that the kinematic time difference is related
to a local property of space and gravity, for more de-
tails see Carmesin (2025e). The absolute zero of the
kinematic time difference represents a zero point of
motion relative to the ACS. This is very valuable, as
physical laws achieve a relatively clear structure and
short form at the zero point of motion, for more details
see Carmesin (2025e).

Moreover, the determination of the kinetic energy
and of the relativistic energy of a clock C, i. e.

E =
E0√

1− ~v2
C,CS/c

2
(35)

become possible in a universal manner by using the
velocity of the clock relative to the ACS, ~vC,CS =
~vC,ACS . This is the adequate term, as the relativistic
energy can be derived from the term of the time dila-
tion, see e. g. Hobson et al. (2006), Carmesin (2019,
2020); Burisch et al. (2025).

Furthermore, the plane, in which the Foucault
pendulum swings, is at rest at Earth’s gravitational
field at a very high precision. The reason is that
the frame dragging of Earth’s gravitational field with
Earth’s rotation is extremely small, it is described by
the Lense - Thirring effect, see Lense and Thirring
(1918), Ciufolini and Pavlis (2004). Another reason
is that gravitational fields of extraterrestrial celestial
bodies are very small at Earth’s surface.

5 Experiments with optical lattice
clocks

The error of measurement of an optical lattice clock is
very small. For instance, when the clock averages for
one second, the error of measurement can be smaller
than δtfrac = 10−16, see Hinkley (2013). At long
averaging, the precision can be δtfrac = 3.5 · 10−19,
see Kim et al. (2023). With such clocks, the Einstein
(1916) equivalence principle can be tested:

5.1 Test of the Einstein equivalence principle

Einstein (1916) proposed an Einstein equivalence
principle, see Hobson et al. (2006), p. 149, lines 24-
25, ’in a freely falling (non-rotating) laboratory occu-
pying a small region of spacetime, the laws of physics

are those of special relativity.’ For instance, in space
science, a freely falling capsule in a drop tower, see
e. g. Joeris et al. (2025), can be regarded as such
a freely falling non-rotating laboratory. According to
the Einstein equivalence principle, the laws of special
relativity theory should be applicable. In particular,
the relativity principle should hold, so that kinematic
time dilation should not be described by a special co-
ordinate system. In contrast, Earth’s ACS is at rest
at Earth’s gravitational field. Consequently, the ACS
is the ECI at the drop tower. Therefore, this ACS is
a special coordinate system. As a consequence, the
capsule of the drop tower is falling relative to that co-
ordinate system.

Thereby, at the Bremen drop tower, the capsule
falls for t = 4.74 s, see Joeris et al. (2025). Dur-
ing that time, the capsule accelerates to the speed
v = g ·t = 46.5 m

s , relative to the ACS. Consequently,
a clock in the capsule can measure the following kine-
matic time difference, during the last second:

δtkin,frac =

∫ 4.74 s

3.74 s

g2 · t2

2c2
dt

=

[
g2 · t3

6c2

]4.74 s

3.74 s

= 9.656 · 10−15 (36)

Remind that this kinematic fractional time difference
9.656 · 10−15 is based on a special coordinate system,
the ECI. In contrast, in the Einstein Equivalence Prin-
ciple, there is no special coordinate system. Conse-
quently, in the Einstein Equivalence Principle, there is
no way to predict the velocity v = 46.5 m

s . There-
fore, in the Einstein Equivalence Principle, there is no
way to predict the kinematic fractional time difference
9.656 · 10−15.

It should be possible to measure that kinematic
fractional time difference 9.656 · 10−15 with an op-
tical lattice clock onboard the capsule. During the
process of free fall, the optical lattice clock should
not be disturbed and operate in a normal mode. At
the touch down, the optical lattice clock might be dis-
turbed. This should not influence the measurement, as
this took place before the touch down. Consequently,
this proposed test of the Einstein equivalence princi-
ple could be feasible.

5.2 Test of the ACS on Earth’s ground

Grotti et al. (2024) measured the gravitational poten-
tial difference ∆Φ between the Physikalisch - Tech-
nische Bundesanstalt (PTB) in Braunschweig and the
Max Planck Institute for Quantum Optics (MPQ) in
Garching. They used two measurement principles: A
geodetic measurement provided a value ∆Φg, and a
chronometric measurement with optical lattice clocks

Hans-Otto Carmesin
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 8 Volume 11, 2026



with a precision of δtfrac ≈ 10−18 provided a value
∆Φc. The difference is in the following interval, see
Carmesin (2025c):

∆Φc −∆Φg ∈
[
−0.68

m

s2
; 5.12

m

s2

]
(37)

In the following, a used coordinate system (or frame)
is marked by an underlined subscript. The circular
frequency ω⊕,ECI of Earth’s rotation measured rela-
tive to the ECI is 2π divided by the periodic time of
the sidereal day dsid = 86 164.09 s. The circular fre-
quency ω⊕,ACS of Earth’s rotation measured relative
to the ACS is measured on the basis of clocks. The
interval of potential differences in Eq. (37) implies
that ω⊕,ACS is in the following interval, see Carmesin
(2025c):

ω⊕,ACS ∈
[
0.4138 · ω⊕,ECI ; 1.0535 · ω⊕,ECI

]
(38)

In this manner, a measurement on Earth’s ground with
optical lattice clocks provided a value for the motion
ω⊕,ACS of the ACS as a function of ω⊕,ECI . Within
the error of measurement, this measurement confirms
the IAU recommendation, see Soffel (2003), that the
ECI should be used as an ACS in Earth’s vicinity.

6 Emergent quantum solution

In this section, the quantum postulates are derived.
This is achieved in the framework of the hypothetic
deductive method. For it, basic and empirically
founded properties of space and time are described in
the following section, and these properties represent
the very founded hypotheses in that framework:

6.1 Hypothetic deductive method I

In this paper, the results are obtained by the hypothetic
deductive method, see Popper (1935, 1974), Niinilu-
oto et al. (2004). Hereby, the following hypotheses
are used:

Used hypotheses: In this section, the hypotheses
are presented that are used in the hypothetic deductive
method. Thereby, these hypotheses are very founded.
Therefore, the risk of failure is very small.

(1) The space, that can be observed in the whole
volume V ranging from Earth to the light horizon,
is isotropic and homogeneous at this universal scale.
Local heterogeneities are possible, for instance near
a mass M , see Schwarzschild (1916), Dyson et al.
(1920), Pound and Rebka (1960). This has been ob-
served, see Planck-Collaboration (2020).

(1.1) Moreover, there is natural space that is very
homogeneous and isotropic at small scales. For
instance, natural space is very homogeneous and
isotropic in a void, see Zeldovich et al. (1982), Con-
tarini et al. (2024), and natural space was very ho-
mogeneous and isotropic in the early universe, see
Planck-Collaboration (2020).

(1.2) Furthermore, in the heterogeneous universe, nat-
ural space can exhibit slight heterogeneity, addition-
ally. For instance, in the heterogeneous universe, Ab-
bott et al. Abbott (2016) observed the merger of a
binary stellar-mass black hole system, and the grav-
itational waves emitted thereby. These gravitational
waves can be interpreted as coherent states that cannot
be emitted in a natural homogeneous universe with-
out heterogeneity, as only an appropriate heterogene-
ity can emit coherent states.

(2) Space has a positive energy density uDE , it is the
dark energy density. It is the density of the energy E
of the volume V of the space in part (1), divided by
this volume:

uDE =
E

V
. (39)

This has been discovered by Perlmutter et al. Perlmut-
ter et al. (1998), see also Riess (2000), Smoot (2007).

(3) The energy speed relation of special relativity the-
ory (SRT) holds, see Einstein (1905), Hobson et al.
(2006): In general, an object with an energy E has a
velocity ~v relative to a mass mref , that is used as a
reference. Its absolute value is called speed v = |~v|.
In the case of zero speed, v = 0, the energy is called
rest energy E0. The energy speed relation of SRT is
as follows, see Eq. (35):

E2
0 = E2 ·

(
1− v2

c2

)
(40)

In the case v < c, the relation has the following equiv-
alent form:

E2 =
E2

0

1− v2

c2

(41)

Hereby and in the following, the velocity is deter-
mined relative to an adequate coordinate system of
relativity theory.

(4) Each volume or volume portion ∆V of space has
zero rest energy E0, and it has zero rest mass m0 =
E0/c

2.
m0(V ) = 0 = E0(V ). (42)

This is shown in the following paragraph.

(5) In a process of increase of volume or space,
the dark energy density uDE is a nonzero constant,
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whereby only very small variations might occur. This
approximate constancy has been observed for the ex-
pansion of space since the Big Bang, see Planck-
Collaboration (2020), Riess (2022). Additionally, that
constancy has been proposed by general relativity the-
ory and cosmology, see Einstein (1917), Friedmann
(1922), Lemaı̂tre (1927), Hobson et al. (2006). Fur-
thermore, the value of uDE is derived here, and the
results are additional evidence for this approximate
constancy.

The above very founded hypotheses (1) to (5) will be
used for deductions in this paper.

Why volume has no rest mass: In this section, it is
shown that volume has zero rest mass m0.

In the vicinity of a mass M , there occurs addi-
tional volume δV , see Fig. (6). If that additional
volume would have a rest energy m0(δV ) > 0, then
there would be an additional rest mass m0 in the
vicinity of each mass M . Such an additional rest
mass has never been observed, see e. g. Landau
and Lifschitz (1976), Navas et al. (2024), Planck-
Collaboration (2020), Zogg (2009). For instance, if
there would be such an additional rest mass m0, then
this m0 would modify the orbits of the GPS satellites,
and this would have been observed, but this has not
been observed. Consequently, additional volume δV
has no rest mass.

Moreover, the additional volume in the vicinity
of a mass is the same type of volume as the usual
volume that occurs without any mass. This is con-
firmed by the observation that only one type of vol-
ume has been observed, see e. g. Navas et al.
(2024), Planck-Collaboration (2020), Casimir (1948),
Zeldovich (1968), Perlmutter et al. (1998). Therefore,
in general, volume has no rest mass.

6.2 Space paradox

In general, a paradox provides the chance to develop
a deep insight, see Brockhaus (1998). In this section,
we will derive a paradox, and we will use it in order
to develop a deep insight.

In the following, the space, that can be observed
in the whole volume V ranging from Earth to the light
horizon, is considered. For instance, this space has
been observed, see Planck-Collaboration (2020).

In physical concepts that are commonly used at
the present-day, the space with its volume V is con-
sidered as a single entity, see e. g. Newton (1687),
Maxwell (1865), Einstein (1915), Friedmann (1922),
Lemaı̂tre (1927), Landau and Lifschitz (1971), Hob-
son et al. (2006), Planck-Collaboration (2020).

Figure 6: In the vicinity of a mass M , the radial
difference ∆L is increased with respect to the orig-
inal difference ∆R that would occur in the limit M
to zero. Note that the difference ∆L is measured as
a light travel distance dLT , and the difference ∆R is
measured as a gravitational parallax distance dGP , see
Carmesin (2021b, 2025e).

That space has a positive energy density uDE , see
Perlmutter et al. (1998):

uDE =
E

V
. (43)

As a consequence of SRT, the volume V with its
energyE of space, velocity ~v, and speed |~v| = v, obey
the energy speed relation, see Eqs. (40 and 41)

E2 =
E2

0

1− v2

c2

or E2 ·
(

1− v2

c2

)
= E2

0 . (44)

As the energy density is nonzero, the energy E is
nonzero. Thus, the above relation can be divided by
E2. Therefore, the following form of the energy mo-
mentum relation holds:

1− v2

c2
=
E2

0

E2
. (45)

As a consequence of the zero rest energyE0 of V ,
see Eq. (42), the right hand side in Eq. (45) is zero.
Consequently, the volume V with its energyE has the
speed c of light in vacuum.

v = c = v(V ) = v(E). (46)
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The paradox: In physical concepts that are com-
monly used at the present-day, the volume is con-
sidered as a single entity, see e. g. Newton (1687),
Maxwell (1865), Einstein (1915), Friedmann (1922),
Lemaı̂tre (1927), Landau and Lifschitz (1971), Hob-
son et al. (2006), Planck-Collaboration (2020). In
such a concept of volume, that whole volume would
move parallel to some unit direction vector ~ev and
with the speed of light, ~v = c · ~ev, see Eq. (46).

However, that velocity ~v would break the isotropy
of space observed at a universal scale, see Planck-
Collaboration (2020). This is a contradiction. In
general, a paradox is a contradiction, the solution
of which provides a deeper insight, see Brockhaus
(1998). The above contradiction is called the space
paradox. It is solved next:

6.3 Solution of the space paradox

In this section, a solution of the space paradox is de-
rived, for the case of natural homogeneous space.

The space paradox has five premises: There are
four founded premises about space and its volume V ,
see section (6.1), parts (1) - (4), part (5) is not used
here: isotropy, the positive dark energy density, the
energy speed relation of SRT (which is correct in the
used ACS), and the zero rest energy E0. And there is
one hardly founded premise: the concept of space as
a single entity. Therefore, space is not a single entity.

As space is not a single object, it must consist of
many parts of the volume V . These parts δV are an-
alyzed next. Thereby, a part of the space with its vol-
ume V is called a volume portion (VP).

Hereby, parts of volume with at least one local
maximum of volume are analyzed. Thereby, for each
part, one such maximum is used in order to localize
that part δV . Such a part is called a localized VP.

Since the energy and volume of space have the
speed v = c, the above parts δV must have the same
speed. For instance, each part δVj has its speed

vj = c. (47)

In general, a part of volume is called volume portion.

6.4 Isotropy formation

The isotropy forms as follows: Since the Big Bang,
the space expands. This is caused by the perma-
nent formation of indivisible volume portions V Pj ,
see Carmesin (2021b, 2025e). Each such VP has a
random velocity ~vj with the speed c. The sum of
the velocities of N VPs represents a random walk.
This should be isotropic. The process of the forma-
tion of isotropy as a function of N is investigated in a

Figure 7: Volume portions δVj with speed vj = c
(dotted) of homogeneous space with different normal-
ized direction vectors ~ej of the velocity ~vj = c · ~ej .
The average of the velocities ~vj is zero. This causes
global isotropy of space consisting of rapidly moving
volume portions. As a consequence, this solves the
space paradox, see Fig. (8).

computer simulation: For N such velocity vectors ~vj ,
the averaged velocity components are evaluated, v̄k,N ,
with k = 1, k = 2 or k = 3. The squared differences
s3,N = (v̄1,N − v̄2,N )2, s2,N = (v̄1,N − v̄3,N )2, and
s1,N = (v̄2,N − v̄3,N )2 are indicators for anisotropy.
Accordingly, the root of the average is a combined in-

dicator for anisotropy: σ :=
√

s1,N+s2,N+s3,N
3 .

In an isotropic set of velocities, the combined in-
dicator σ decreases proportional to 1/

√
N , in the av-

erage. This has been investigated with a respective
computer experiment, see Fig. (8).

Figure 8: The combined indicator for anisotropy: σ
is shown as a function of the number of vectors N
(blue). As expected in an isotropic set of vectors, this
indicator decreases proportional to 1/

√
N , in the av-

erage. This shows how space, which is a stochastic
average of indivisible volume portions, becomes in-
creasingly isotropic, when the number N of indivisi-
ble VPs increases.
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6.5 Indivisible volume portions

Next, for the case of a homogeneous universe and
space, and for the case of a usual density ρhom, The
following question is analyzed:

Can such a part δVj with vj = c consist of smaller
parts δVk?

Hereby, a usual density ρhom is a density below an
ultrahigh critical density ρcr., space−symmetry−breaking
at which the symmetry of space breaks in a phase tran-
sition. This can occur in a phase transition from space
to matter in the Higgs (1964) mechanism. Moreover,
this can take place in a dimensional phase transition,
see Carmesin (2017, 2019, 2021b,a)).

If such a part δVj of space, with vj = c, would con-
sist of smaller parts δVk, then the following would be
implied:

(2.1) Each smaller part δVk would have the speed
vk = c, as the energy and volume of space have the
speed v = c.

(2.2) Consequently, each part δVk would have a veloc-
ity ~vk = c · ~ek, with a direction vector ~ek with norm
one.

(2.3) As the considered universe is homogeneous (see
part (2)), there is no source that could provide a uni-
form direction of the direction vectors ~ek.

(2.4) Hence, the velocity ~vj of the considered part δVj
with vj = c would be an average of the velocities ~vk.
Thereby, as a consequence of the different direction
vectors ~ek in part (2.3), the velocity ~vj would have an
absolute value smaller than c, i. e. |~vj | = vj < c. This
would contradict the speed vj = c in Eq. (47).

(2.5) Therefore, the parts δVj with speeds vj = c can-
not consist of smaller parts. This is the answer to the
question in (2). This implies that the parts δVj with
vj = c are indivisible. Such a part δVj with its speed
vj = c is called indivisible volume portion, indivisible
VP.

(3) Next, it is shown how the indivisible VPs solve the
space paradox:

(3.1) The energy and volume of space have the speed
c, and the energy of space obeys E2 ·

(
1− v2

c2

)
=

E2
0 = 0, as space consists of indivisible VPs δVj with

the speed vj = c.

(3.2) Moreover, the velocities ~vj = c · ~ej of the indi-
visible VPs have stochastic direction vectors ~ej , that
are distributed isotropically. Hence, these velocities
average to zero.

(3.3) As a consequence, space is isotropic at a uni-

versal scale, see Fig. (7). In this manner, the space
paradox is solved.

Therefore, we obtain the following deep insight, the
stochastic property of space:

IN A HOMOGENEOUS AND ISOTROPIC UNIVERSE,
SPACE IS A STOCHASTIC AVERAGE OF MANY INDI-
VISIBLE VOLUME PORTIONS δVj , EACH WITH THE
SPEED vj = c. Hereby, the velocities ~vj of the vol-
ume portions average to zero.

(4) The solution has been generalized to heteroge-
neous space: The early universe was very homoge-
neous and isotropic, see Planck-Collaboration (2020).
The heterogeneity of the mass distribution in the uni-
verse increased gradually, and thereby the heterogene-
ity of space evolved gradually, see e. g. Peebles and
Bharat (1988), Mandal and Nadkarni-Ghosh (2020),
Carmesin (2018, 2021b, 2025e). Therefore, the nat-
ural heterogeneous space is a slight variation of the
natural homogeneous and isotropic space. Details of
that slight variation are presented in Carmesin (2024a,
2025e).

6.6 Each indivisible VP exists within an un-
derlying VP

In this section, a very valuable and insightful descrip-
tion of VPs is developed. With it, a very general dif-
ferential equation (DEQ) of the dynamics of VPs is
derived in the following section.

Here and in the following, mathematically, a VP
could be arbitrarily small. Physically, an indivisible
VP has a kind of quantization. Accordingly, the size
is limited from below. In particular, a corresponding
Heisenberg (1927) uncertainty relation limits the stan-
dard deviation of an indivisible VP from below.

Additional volume: In this section, an indivisible
VP δVj is analyzed within the underlying volume por-
tion, in which it exists. There are two ways to describe
this: Firstly, δVj is part of the underlying volume por-
tion, in which δVj exists. This underlying volume por-
tion is called ∆VL. Secondly, δVj is an additional part
of the remaining volume. This remaining volume is
called δVR. Its amount is as follows:

∆VR = ∆VL − δVj (48)

Consequently, δVj is an additional volume that is
combined with ∆VR. More generally, the indivisible
VP δVj can be generalized to each mathematical addi-
tional volume δV . In such a case, the above Eq. takes
the following form:

∆VR = ∆VL − δV (49)
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In order to derive general laws of physics, this addi-
tional volume δV is normalized in the next section:

Relative additional volume: In general, in order to
derive general laws of physics, it is valuable to use in-
tensive quantities rather than extensive quantities, see
Redlich (1970). In the present case of a VP, it is use-
ful to utilize the ratio of its additional volume δV and
its complete or enlarged volume δVL. Such ratios are
formed and analyzed in detail in this section:

That ratio is called relative additional volume εL:

εL :=
δV

∆VL
. (50)

EACH VP HAS A CORRESPONDING RELATIVE AD-
DITIONAL VOLUME εL.

Examples of parts of space: In this paragraph, es-
sential parts of natural space with the volume V are
analyzed.

(1) Additional volume in the vicinity of a mass M :

In the vicinity of a mass M , there occurs additional
volume δV . It is at rest relative to M . Moreover,
in the vicinity of M , the ACS is nearly at rest at M ,
see Carmesin (2025e), Carmesin (2025d), Carmesin
(2025c). Consequently, the speed of the additional
volume in the vicinity of a mass is clearly smaller
than c, i. e. v < c. Each additional volume with a
speed v < c must be a stochastic average of the in-
divisible VPs δVj with their speeds vj = c, as space
with its volume V consists of indivisible VPs δVj with
their speeds vj = c. This is the case for homogeneous
and isotropic space and for the case of heterogeneous
space which is a slight variation of homogeneous and
isotropic space.

Altogether, additional volume that is at rest in the
vicinity of a mass M is a stochastic average of indi-
visible VPs.

(2) Relative additional volume εL:

In general, a VP δV is located within an underlying
VP ∆VL. The relative additional volume εL is the
following ratio of the VP δV and of its underlying VP
∆VL:

εL :=
δV

∆VL
=

∆L ·∆x ·∆y −∆R ·∆x ·∆y
∆L ·∆x ·∆y

=
∆L−∆R

∆L
=

δL

∆L
, with δL := ∆L−∆R. (51)

Thereby, the ratio δL
∆L is usually interpreted as a tensor

element, whereby the L - direction is the z - direction

or the 3 - direction, for instance:

εzz :=
δz

∆z
= εjj , with j = 3. (52)

In general, a volume portion VP δV represents a
change of an underlying VP ∆VL, and this change
represents a tensor element or tensor. Thereby, typ-
ically, the change of each VP ∆V has a quadrupo-
lar structure. A dipolar structure is excluded, as vol-
ume cannot be negative. Therefore, each change of
an underlying VP ∆V can be described by a tensor of
rank two. It is called change tensor εij , see Carmesin
(2021b, 2025e). In general, an element εij of a change
tensor is the ratio of the change δLi divided by the un-
derlying length ∆Lj :

εij :=
δLi
∆Lj

. (53)

Hereby, for each normalized direction vector ~ej , the
underlying length ∆Lj is the sum of the original
length ∆Rj and the change δLj :

∆Lj := ∆Rj + δLj . (54)

In general, indivisible VPs can have the structure
of a change tensor as well, see Fig. (9).

(3) Gravitational wave:

Without loss of generality, a gravitational wave can be
described as follows, see e. g. Landau and Lifschitz
(1971): It has an angular frequency ω. At a location,
a gravitational wave has one direction of propagation
~ez , and two transverse directions ~ex and ~ey. There are
two possible modes. In a first mode, the elongations
are εxx ·cos(ωt) and εyy ·cos(ωt), with εxx = εyy, see
Fig. (9). The second mode is equal to the first mode
rotated by 45o around ~ez .

The elongations and the velocity of the gravita-
tional wave can be measured with help of a Michelson
interferometer. For instance, Abbott (2016) measured
the amplitude εxx,max = 1 · 10−21.

In the theory of waves, the above observed grav-
itational wave is a wave with a coherence length that
amounts several wave lengths. Accordingly, a gravi-
tational wave could be interpreted as a coherent state
in the framework of quantum physics, if quantum
physics is applicable.

6.7 Dynamics of volume portions

In this section, the dynamics of an arbitrary VP is de-
scribed by its relative additional volume. The result
is achieved with help of calculus or standard analysis
only. As a consequence, the dynamics of VPs derived
here is very general.
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Figure 9: Volume portions (VPs) δVj with speed
vj = c with different velocities ~vj = c ·~ej : In general,
each VP can include a change as marked at the left.
In principle, each VP δVj can be characterized very
precisely by that change. For instance, the change of
a VP δVj moves with its velocity ~vj , and typically, it
has a quadrupolar structure. A dipolar structure is ex-
cluded, as volume cannot be negative. At the right,
these changes are indicated by wiggly lines, for sim-
plicity. The average of the velocities ~vj = c · ~ej is
zero. This causes global isotropy of space consisting
of volume portions with speeds vj = c. Therefore,
this solves the space paradox.

Figure 10: A VP with a relative additional volume
εL(τ, L) with a local maximum is shown as a func-
tion of location L and time τ . Thereby, the location
L summarizes the three-dimensional vector ~L in such
a manner, that the length of the path of the VP is de-
scribed by L.

Firstly, the applicability of calculus or standard anal-
ysis is investigated:

Calculus or analysis are a mathematical tool, such as
algebra and stochastics. Thereby, calculus or analy-
sis do not include a prejudice about the continuity of
space and time. The reason is that in the present inves-
tigation, space is a stochastic average of VPs. Hereby,
VPs will be characterized by eigenvalues with a spec-
trum of eigenvalues. This spectrum can turn out to be
discrete, continuous or partially discrete and partially
continuous. As calculus or analysis are used in this
study, these fields of mathematics do not necessarily
include a prejudice about the discreteness or continu-
ity of space.

In contrast, an exclusion of calculus and analysis
would include a prejudice about the discreteness or
continuity of space.

In fact, the space paradox and the implied struc-

ture of space as a stochastic average of VPs does al-
ready deduce an essential degree of discreteness of
space. And it is important to investigate the amount
of discreteness and continuity of these VPs in the fol-
lowing.

Secondly, the differential equation, DEQ, of VPs is
derived:

We consider VPs that can be localized by their form.
Accordingly, each localized VP has a local maximum
of its relative additional volume εL. It is a function
of its three-dimensional position vector ~L and of the
time τ . It is illustrated in Fig. (10), whereby the three-
dimensional position vector is summarized by a posi-
tion L. Altogether, a localized VP can be described
by a function εL(τ, ~L) with a local maximum. If there
should be several local maxima or a set of local max-
ima, then one local maximum can be chosen as a con-
vention.

As a fact of calculus or of analysis, at the local
maximum, the change of εL(τ, ~L) is zero. Thus, the
total derivative is zero:

dεL(τ, ~L(τ)) = 0 (55)

That derivative is evaluated with help of partial deriva-
tives:

dεL(τ, ~L(τ)) =
∂

∂τ
εL(τ, ~L)dτ+

∂

∂~L
εL(τ, ~L)d~L = 0. (56)

The VP moves parallel to a corresponding direction
unit vector ~ev of its velocity ~v = ∂~L

∂τ . Therefore, dur-
ing a time dτ , the vector ~L changes by the amount d~L
= v · dτ · ~ev. With it, the total derivative in Eq. (56) is

∂

∂τ
εL(τ, ~L)dτ + v · ~ev ·

∂

∂~L
εL(τ, ~L)dτ = 0. (57)

The above Eq. is divided by dτ . Moreover, the Eq. is
solved for ∂

∂τ εL:

∂

∂τ
εL(τ, ~L) = −v · ~ev ·

∂

∂~L
εL(τ, ~L),

each indivisible VP has v = c (58)

This is the differential equation, DEQ, of VPs or of
volume dynamics (VD). A Lorentz invariant form of
the DEQ is achieved as follows. The square is applied
to Eq. (58), and the right hand side is subtracted,(

∂εL
∂τ

)2

− v2 ·
(
∂εL

∂~L

)2

= 0,

each indivisible VP has v = c (59)
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EACH LOCALIZED VP FULFILLS THE VOLUME DY-
NAMICS in Eq. (58) or in the Lorentz invariant Eq.
(59).

For the following reasons, the derived dynamics is
very founded and insightful: The derived DEQ of VD
describes the dynamics of a VP with at least one lo-
cal maximum. The derivation uses no postulate or
unfounded hypothesis. In contrast, general relativ-
ity uses postulates such as the Einstein Hilbert ac-
tion or the Einstein field equation, see Einstein (1915),
Hilbert (1915). Similarly, quantum physics uses
’guessed’ postulates, see e. g. Hilbert et al. (1928),
Sakurai and Napolitano (1994), Ballentine (1998).
Also gravity uses ’guessed’ postulates or restrictions.
Examples are the restriction to physics without quanta
in general relativity, see Einstein (1915), and in New-
ton’s gravity, see Newton (1687). Another example
is the graviton hypothesis. Thereby, gravity uses hy-
pothetic quanta, see e. g. Blokhintsev and Galperin
(1934).

Indeed, we will show later that the DEQ of
VD implies gravity and curvature of space and time.
Moreover, we will show that the DEQ of VD implies
the postulates of quantum physics. In particular, based
on the VD, we derive the Schrödinger equation in the
next section.

6.8 Discussion of the VD

The differential Eq. of VD is a linear differential equa-
tion for the relative additional volume εL. As a conse-
quence, its solutions are numerically stable, as chaotic
behaviour is caused by a nonlinear dynamics only, see
Wiggins (2003).

In fact, relative additional volume εL describes
the volume portions at a classical level. But the
volume dynamics includes even more dynamical be-
haviour. For it, a time derivative will be applied to
the differential Eq. of VD. As a consequence, the re-
sulting differential Eq. will describe wave functions
Ψ, which describe indivisible volume portions. In
general, these wave functions can even be complex,
and their properties imply the postulates of quantum
physics.

In this manner, the transition from a classical
stochastic description of indivisible volume portions
to a description with complex-valued wave functions
and quantum postulates is derived in the present paper.
This will be derived in the following sections (6.9, 7
and 8).

These postulates imply phenomena such as non-
locality, see Aspect et al. (1982), Zeilinger et al.
(1988), Clauser and Horne (1974) or teleportation, see
Ma et al. (2012). Thereby, the postulates derived for

volume portions can be applied to matter, as matter
emerges from vacuum or volume by a phase transi-
tion, see Higgs (1964), Carmesin (2021a, 2022c).

6.9 Derivation of the Schrödinger equation

In this section, we show that each VP fulfills a gener-
alized Schrödinger equation (GSEQ), which implies
the usual Schrödinger equation (SEQ), which holds
for the special case of a non-relativistic mass M .

The volume dynamics implies the GSEQ: In this
section it is shown, that VPs with their VD imply the
GSEQ.

(1) In a first investigation, the geometry of relative ad-
ditional volume is analyzed:

For each VP, the DEQ (58) of VD is fulfilled. Thereby,
the VP moves in the direction ~ev of its velocity, see
Fig. (10).

In general, a relative additional volume with an
increase δL3 with the normalized direction vector
~e3 and with a propagation of indivisible VPs in the
same direction, and with an underlying length ∆L3, is
called unidirectional relative additional volume εL,33,
see Eqs. (52, 53 and 54). For more information about
such tensors see e. g. Landau and Lifschitz (1971),
Lee (1997), Carmesin (2021b, 2024a, 2025e).

(2) Next, each VP is described by the DEQ of VD. In
that DEQ, v = c is inserted. Additionally, the time
derivative is applied, so that the relative additional
volume εL,jj becomes ∂

∂τ εL,jj , which is usually ex-
pressed by ε̇L,jj . As a consequence, the DEQ of VD
implies the following DEQ:

∂

∂τ
ε̇L,jj = −c · ~ev ·

∂

∂~L
ε̇L,jj (60)

(3) Next, as an equivalence transformation of the
above DEQ, the factor i~ is multiplied. This multipli-
cation is also physically equivalent, as the system of
units can be chosen freely. And the factor ~ is one in
natural units, see Tipler and Llewellyn (2008), pages
673-674. Consequently, the DEQ of VD implies the
following DEQ:

i~ · ∂
∂τ
ε̇L,jj = c · ~ev ·

[
−i~ · ∂

∂~L

]
ε̇L,jj (61)

Moreover, for the case of an indivisible VP, this in-
divisibility corresponds to the quantum property with
its universal unit of quantization, the Planck (1900)
constant h or its reduced version ~ := h

2π .
Accordingly, the correspondence principle is ap-

plicable, see Tipler and Llewellyn (2008) page 160.
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Consequently, the rectangular bracket is identified
with the momentum operator, see (Carmesin, 2024a,
chapter 9):

i~ · ∂
∂τ
ε̇L,jj = ~ev · c · ~̂p · ε̇L,jj (62)

In this DEQ, ε̇L,jj represents a rate. That rate is nor-
malized by a factor tn. In physics, tn has the dimen-
sion time and the unit second. Consequently, the nor-
malized rate tn ·ε̇L,jj is dimensionless and has the unit
one. It will be shown that the normalized rate has the
role of a wave function in the above DEQ. Accord-
ingly, the normalized rate is called wave function Ψ.
Of course, this can be regarded as an abbreviation, if
desired. As a consequence, the DEQ of VD implies
the following DEQ:

i~ · ∂
∂τ

Ψ = c · ~ev · ~̂p ·Ψ (63)

Ψ := tn · ε̇L,jj (64)

The product of the momentum operator and the direc-
tion vector of propagation, ~ev · ~̂p, is the operator of the
absolute value of the momentum p̂:

i~ · ∂
∂τ

Ψ = c · p̂ ·Ψ (65)

In the present case of a VP that propagates with the
speed c, special relativity implies that the product of c
and the momentum p is the energy E. Consequently,
according to the correspondence principle, see Tipler
and Llewellyn (2008), pages 673-674, the product of
c and the momentum operator is the energy operator:

i~ · ∂
∂τ

Ψ = Ê ·Ψ (66)

This Eq. has the form of a Schrödinger equation,
SEQ. However, the SEQ holds for non-relativistic ob-
jects. In contrast, this DEQ holds for relativistic ob-
jects too, and it implies the SEQ for non-relativistic
objects, see next paragraph. Thus, this DEQ is the
GSEQ.

EACH VP FULFILLS THE GSEQ (66) AND HAS A
PHYSICALLY REAL WAVE FUNCTION Ψ ∝ ε̇L,rr in
Eq. (64). Thereby, according to the Hacking (1983)
criterion, a wave function has an extraordinary physi-
cal reality, as it can be manipulated even in a nonlocal
manner, see e. g. Aspect et al. (1982).

The volume dynamics implies the SEQ: In this
section it is shown, that VPs with their VD imply the
SEQ.

For each localizable quantum object at v ≤ c, the fol-
lowing is implied:

(1) For the case of ultrafast objects, with p2c2 �
m2

0c
4, see e. g. (Workman, 2022, Eq. 14.38), an

energy eigenvalue is obtained by the following lin-
ear approximation of the energy momentum relation
E =

√
p2c2 +m2

0c
4 with respect to the small ratio

m2
0c

4

p2·c2 :

E =̇ p · c+
m2

0c
4

2 · p · c
(67)

Hereby, =̇ marks the first order approximation for
small m

2
0c

4

p2·c2 . The corresponding linear approximation
of the GSEQ is obtained by replacing the eigenvalue
p by its operator p̂:

i~
∂

∂τ
Ψ =̇

(
p̂ · c+

m2
0c

4

2 · p̂ · c

)
·Ψ (68)

(2) For the case of slow objects, with p2c2 �
m2

0c
4 =: E2

0 , the following holds:

(2a) An energy eigenvalue of the energy is obtained
by the following linear approximation of the energy
momentum relation E =

√
p2c2 +m2

0c
4 with respect

to the small ratio p2·c2
E2

0
:

E =̇ E0 +
p2

2 ·m0
(69)

(2b) The corresponding linear approximation of the
GSEQ is obtained by replacing the eigenvalue p by its
operator p̂.

i~
∂

∂τ
ΨE0 =̇

(
E0 +

p̂2

2 ·m0

)
·ΨE0 (70)

Hereby, the wave function includes the rest energyE0.
Accordingly, the wave function is named ΨE0 . In gen-
eral, the following squares are equal:

p̂2 = ~̂p 2 (71)

(2c) The wave function is factorized:

ΨE0 = Ψ · exp

(
E0τ

i~

)
(72)

The left hand side of Eq. (70) is evaluated with the
product rule:

E0ΨE0 + exp

(
E0τ

i~

)
i~
∂Ψ

∂τ
=̇

(
E0 +

p̂2

2m0

)
·ΨE0

(73)
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(2d) In the above DEQ, E0ΨE0 is subtracted. The
resulting DEQ is divided by exp

(
E0τ
i~
)
. As a

consequence, the SEQ proposed or postulated by
Schrödinger (1926) is derived from the VD:

i~
∂

∂τ
Ψ=̇

p̂2

2 ·m0
·Ψ = ĤΨ (74)

Additionally, Ĥ can include a potential energy:

i~
∂

∂τ
Ψ=̇

p̂2

2 ·m0
Ψ + EpotΨ = ĤΨ (75)

Interpretation of VPs and masses: In this section,
the relation between VPs and masses is elaborated on
the basis of the above dynamics of the VD, the GSEQ
and the SEQ, and of the Higgs (1964) mechanism:

Some elementary particles form their mass by a
phase transition, see Higgs (1964), Aad (2012),
Chatrchyan (2012), Navas et al. (2024), Carmesin
(2021b), Carmesin (2021a), Carmesin (2022c): In
physics, see Guericke (1672), Casimir (1948), Tipler
and Llewellyn (2008), empty space is called vacuum,
and its energy density is the density uDE of dark en-
ergy, see Perlmutter et al. (1998), Huterer and Turner
(1999).

As shown by the space paradox, the vacuum is a
stochastic average of indivisible VPs. As a conse-
quence, the above phase transition transforms indivis-
ible volume portions to a mass.

In a typical phase transition, objects change from one
phase to another phase. Thereby, these objects are
described by the same fundamental dynamics in the
first phase, in the second phase and during the transi-
tion. An example is the phase transition of condensa-
tion, see van der Waals (1873), Landau and Lifschitz
(1980).

In the present case, such a fundamental dynamics that
holds in the first phase, in the second phase and during
the transition has been derived. It is the DEQ of VD.
It holds for VPs in the first phase, and it implies the
SEQ that holds for the masses in the second phase. A
description of the phase transition in the framework of
the VPs is elaborated in Carmesin (2022c).

Of course, the question remains how a mass can emit
its wave function. This will be derived in the next
section: In part (7), it is shown that the VPs provide
gravity as well as the local curvature of space and time
as a byproduct. It has already been shown that a mass
causes additional volume and VPs, see corresponding
paragraphs.

EACH MASS M FULFILLS THE SEQ (75) IMPLIED
BY THE GSEQ. M can be formed from VPs via a

phase transition, see Higgs (1964), Carmesin (2021a,
2022c).

Figure 11: In the vicinity of a field generating mass
M , the space is curved (upper map), and in the limit
M → 0, the space is flat (lower map), see Fig (6). The
physical situation is expressed with help of a field in
the lower part.

7 Emergent gravity and curvature

In the vicinity of a mass M , there occurs a curvature
of space, as well as an exact gravitational potential
and field, see Fig. (6). Next it is shown how these
phenomena are implied by the DEQ of VD:

7.1 Potential and field

In this section, an exact generalized potential and gen-
eralized field are derived from the volume portions.
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Generalized potential and field: In the vicinity of
a mass M , see Fig. (11), the unidirectional radial
relative additional volume εL,rr exhibits the follow-
ing properties. Hereby, spherical polar coordinates
(r, ϑ, ϕ) with M at the origin, dR at M → 0 and
dL at M 6= 0 in Fig. (11) are used:

(1) For each indivisible VP δVj , the relative additional
volume εL,rr,j(τ, ~L) propagates according to the DEQ
of VD.

(1.1) That DEQ is multiplied by c:

c · ∂
∂τ
εL,rr,j(τ, ~L) = ~ev ·

∂

∂~L

(
−c2 · εL,rr,j(τ, ~L)

)
(76)

(1.2) At an event (τ, ~L), including the set S of its sur-
rounding events in a time interval τi ∈ [τ − ∆τ, τ +

∆τ ] and in a ball |~Li−~L| ≤ ∆L, with ~L in the vicinity
of the mass, the sum of the relative additional volume
of all indivisible VPs δVj is applied:

c · ∂
∂τ

∑
j in S

εL,rr,j(τ, ~L)

= ~ev ·
∂

∂~L

−c2 ·
∑
j in S

εL,rr,j(τ, ~L)

 (77)

(1.3) The bracket in the above DEQ has the form of a
generalized potential Φgen(τ, ~L)

Φgen(τ, ~L) := −c2 ·
∑
j in S

εL,rr,j (78)

Hereby, the potential is generalized, as it describes
volume portions, since εL,rr,j is the relative additional
volume of an indivisible VP.

(1.4) The negative gradient of that generalized poten-
tial is the generalized field ~Ggen, see Fig. (11):

~Ggen(τ, ~L) := − ∂

∂~L

−c2 ·
∑
j in S

εL,rr,j


= − ∂

∂~L
Φgen(τ, ~L) (79)

The generalized field ~Ggen is the exact gravitational
field ~G∗exact, see section (7.3). Moreover, the field is a
sum of the following indivisible field parts ~Gj of the
indivisible volume portions εL,rr,j :

~Ggen(τ, ~L) :=
∑
j in S

~Gj(τ, ~L) = ~G∗exact(τ,
~L)

with ~Gj(τ, ~L) := c2 ∂

∂~L
εL,rr,j (80)

(1.5) Therefore, the DEQ of VD in Eq. (76) takes the
form of the following rate gravity relation:

c · ∂
∂τ

∑
j in S

εL,rr,j =

~ev ·
∂

∂~L
Φgen(τ, ~L) = −~ev ~Ggen(τ, ~L) (81)

The potential and field in the above equation are gen-
eralized to the respective quantities for one indivisible
VP δVj . Thereby, the potential is

Φgen,j(τ, ~L) = −c2εL,rr,j(τ, ~L), (82)

and the field is as follows:

~Ggen,j(τ, ~L) = − ∂

∂~L
Φgen,j(τ, ~L) = c2 ∂

∂~L
εL,rr,j .

(83)
These relations are results of the VD. Formally, these
results can be obtained by an application of the above
average with one indivisible VP only.

For comparison, expectation values of the field
have been derived from the VD as follows: Firstly,
a quantum field theory has been derived from the VD.
Secondly, the expectation value of a field has been
derived from the quantum field theory, see Carmesin
(2024a, 2025e).

(2) For these indivisible VPs, and for each event
(τ, ~L), that rate gravity relation can be expressed with
help of the following rate gravity scalar RGSgen:

RGSgen :=

c · ∂
∂τ

∑
j in S

εL,rr,j

2

− ~G2
gen, thus

(84)

RGSgen =

c · ∂
∂τ

∑
j in S

εL,rr,j

2

−
D∑
k=1

G2
gen,k and (85)

RGSgen =

c · ∂
∂τ

∑
j in S

εL,rr,j

2

−
(
c
∂

∂~L
Φgen

)2

(86)

and RGSgen = 0 (87)
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Hereby, the dimension of space is marked by D.

(3) For each underlying volume ∆V , and for each
event (τ, ~L), with a gravitational parallax distance R
from M , the generalized field is proportional to 1

R2 :

|~Ggen| ∝
1

R2
, for D = 3, and for ∆V (88)

This result is derived as follows:

(3.1) Eq. (81) is multiplied by ~ev. Hence, the field is
as follows:

~ev · c ·
∂

∂τ

∑
j in S

εL,rr,j = −~Ggen(τ, ~L) (89)

(3.2) Integration with respect to τ from zero to a time
δτ yields:

~ev ·c ·
∑
j in S

εL,rr,j(δτ) = −
∫ δτ

0

~Ggen(τ, ~L)dτ (90)

The time δτ is chosen so small that the integral in the
above Eq. is approximated by δτ · ~Ggen. Thus, the
field is as follows:

~ev · c ·
∑
j in S

εL,rr,j(δτ) = −δτ · ~Ggen (91)

(3.3) The definition εL,rr,j =
δVL,rr,j
dVL

is used. The
energy density uvol of volume is nonzero, as it is ap-
proximately the same as uDE , which is nonzero, see
Perlmutter et al. (1998), Riess (2000), Smoot (2007).
Therefore, the indivisible VP δVL,rr,j is proportional
to the corresponding energy δEj . The latter is pro-
portional to the momentum δpj = δEj/c, as each VP
propagates with the speed c, that is: δVL,rr,j =

δEj
uvol

=
c·δpj
uvol

.

(3.4) The underlying volume dVL of a shell with cen-
ter M is considered. It is as follows: dVL = AD ·
RD−1 · dL. Thus, the field is as follows:

−~ev ·
c2

uvol ·AD · dL
·
∑

j in S δpj

δτ
· 1

R2
= ~Ggen (92)

Hereby, the thickness dL of each shell is chosen con-
stant, so that it does not dependent on R. Thence,
the first fraction is constant. The 2nd fraction is the
momentum current flowing through each shell. It is
constant, as no shell causes any momentum. Conse-
quently, 1

R2 ∝ |~Ggen|. q. e. d.

A version of the corresponding result for a dimension
D > 3 is shown in (Carmesin, 2024a, THM 9).

(4) As M is the source of the field ~Ggen(R), that field

is proportional to M :
∣∣∣~Ggen(R)

∣∣∣ ∝ M
R2 .

Thus, there is a universal constantGgen of proportion-
ality: ∣∣∣~Ggen(R)

∣∣∣ =
GgenM

R2
, for D = 3. (93)

In general, the value of a universal constant, such as
Ggen, must be obtained from observation. Accord-
ingly, Ggen is obtained in the next section. Addition-
ally, the curvature of space is analyzed:

Spin, statistics and the additive structure of VPs,
potentials and fields: In general, a VP has the ten-
sor property of a quadrupolar structure. Consequently,
it is represented by a tensor of rank two.

Therefore, at the level of quantum physics, an in-
divisible VP has an integer valued spin, see Landau
and Lifschitz (1965), §58, Carmesin (2024d):

S = n · ~, with a natural number n. (94)

As a consequence, at the level of quantum
physics, an indivisible VP is a boson, see Landau
and Lifschitz (1965) §64, Carmesin (2024d). Conse-
quently, at the level of quantum physics, an indivisible
VP obeys the Bose (1924) statistics, alias Bose - Ein-
stein statistics, see Landau and Lifschitz (1965) §64,
Sakurai and Napolitano (1994) section 7.2.

The Bose - Einstein statistics implies that several
bosons can exist at the same place. Consequently, the
additional volumes εL,rr,j caused by different masses
mj can exist simultaneously at each point P in the
universe, and these εL,rr,j add up at P . This, in turn,
implies that the potential Φgen(P ) at P is the sum
of these additional volumes εL,rr,j(P ) multiplied by
−c2. This founds Eq. (78) at the level of quantum
physics. As a consequence of this potential, the gen-
eralized field ~Ggen(P ) = ∂

∂~L
Φgen(P ) has the same

additive structure.

7.2 Curvature in the vicinity of a mass

The DEQ of VD provides the curvature in the vicinity
of a mass M as follows:

(1) For the case of a shell with the center M and with
the gravitational parallax radius R, the relative addi-
tional volume εL,rr is as follows:

εL,rr =
dVL − dVR

dVL
= 1− dVR

dVL

= 1− 4πR2dR

4πR2dL
= 1− dR

dL
. (95)
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The resulting fraction dR
dL is called position factor, see

e. g. Carmesin (2024a):

εE(R) :=
dR

dL
= 1− εL,rr (96)

The fraction dL
dR is identified with the root of the radial

tensor element of the metric tensor. It occurs in the
vicinity of a mass M .

√
grr :=

dL

dR
=

1

εE(R)
. (97)

More generally, at eachR, or at each event (τ, ~L) with
|~L| ≥ R, the curvature can be generalized for the case
of a single indivisible VP δVj , with the relative addi-
tional volume εL,rr,j , as follows:

grr,j :=
1

ε2
E,j

:=
1

(1− εL,rr,j)2
. (98)

(2) A DEQ for the position factor is derived: For it,
∂
∂L is applied to Eq. (96). This implies:

∂

∂L
εE =

∂R

∂L

∂

∂R
εE = εE

∂

∂R
εE = −

∂εL,rr
∂L

(99)

The potential Φgen = −c2εL,rr is solved for εL,rr,
and this is inserted into Eq. (99):

εE(R)
∂εE
∂R

=
∂Φgen/c

2

∂L
(100)

The gradient ∂
∂L = ~ev

∂
∂~L

is applied:

εE(R)
∂εE
∂R

= ~ev
∂Φgen/c

2

∂~L
(101)

The field −∂Φgen

∂~L
= ~Ggen is identified:

−~ev
1

c2
~Ggen = εE(R)

∂εE
∂R

(102)

The field and the direction vector are antiparallel.
Consequently, the field is as follows:

1

c2
|~Ggen| = εE(R)

∂εE
∂R

(103)

The field as a function of the mass in Eq. (93) is used:

GgenM

R2c2
= εE(R)

∂εE
∂R

(104)

(3) The DEQ for the position factor is solved:

Integration by parts yields:∫
GgenM

R2c2
dR =

∫
εE(R)dεE (105)

The integral is evaluated with a constantK of integra-
tion:

K − GgenM

Rc2
=

1

2
ε2
E (106)

That result is solved for the position factor:

εE =

√
2K − 2GgenM

c2

1

R
(107)

In the limit R → ∞, there is no curvature. Conse-
quently, εE = dR

dL = 1. As a consequence, 2K = 1.
Therefore, the solution of the DEQ provides the posi-
tion factor as follows:

εE =

√
1− 2GgenM

c2

1

R
(108)

(4) The position factor in Eq. (108) is compared with
observation. For it, the position factor is replaced by
the inverse root of the radial tensor element (see Eq.
97):

εE =

√
1− 2GgenM

c2

1

R
=

1
√
grr

(109)

Moreover, observation shows that this inverse root of
the radial tensor element is as follows, see e. g. Hob-
son et al. (2006), Stephani (1980):√

1− 2GM

c2

1

R
=

1
√
grr

=

√
1− RS

R
. (110)

Hereby, we use the definition of the Schwarzschild ra-
dius RS := 2GM

c2
. The comparison of the two rela-

tions for the tensor element in Eqs. (109 and 110)
shows that the generalized universal constant Ggen is
the same as Newton’s constant of gravitationG. Thus,
the generalized field is identified with the exact gravi-
tational field and the generalized potential is identified
with the exact gravitational potential. These identified
potential and field are exact, as they are derived with-
out any approximation, and as they provide the correct
curvature. This exact gravitation, derived here exactly,
differs from Newton’s law of gravitation, which is an
approximation.

IN THE VICINITY OF A MASS, THE INDIVISIBLE
VPS CAUSE A GENERALIZED POTENTIAL, A GEN-
ERALIZED FIELD, THE GRAVITATIONAL FIELD AND
THE CURVATURE OF SPACE AND TIME. The respec-
tive Eqs. are derived.
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7.3 Discussion of gravity and curvature

In the vicinity of a mass M , the VD provides the
relative additional volume εL,rr(r) as a function of
r. That εL,rr(r) provides the exact gravitational po-
tential Φexact = −c2 · εL,rr(r). That exact gravita-
tional potential provides the exact gravitational field
~G∗exact = − ∂

∂~L
Φexact. In the following, these valu-

able and insightful properties are analyzed and inter-
preted:

Transmission of the potential and field: The in-
divisible VPs δVj with their relative additional vol-
ume εL,rr,j(r) provide a net outward propagation.
Thereby, these indivisible VPs transmit a nonzero
momentum, as the energy density uvol is positive.
As a consequence, these indivisible VPs transmit the
gravitational interaction. This confirms the idea of
the graviton hypothesis proposed by Blokhintsev and
Galperin (1934). Moreover, these indivisible VPs ex-
plicate the mechanism of the transmission of gravity.

In addition, these indivisible VPs cause and ex-
plain the curvature of space. Thereby, the curvature
is explained with help of the sum of indivisible VPs.
More generally, the curvature of a single indivisible
VP has been generalized, see Eqs. (97 and 98).

On the exactness of the potential and field: The
generalized potential and field derived here are exact.
In contrast, the gravitational potential is only an ap-
proximation in Newton’s theory. For instance, cor-
rection terms depending on the gravitational parallax
distance R and on the velocity ~v have been elaborated
in Post-Newtonian approximations, see e. g. Yang
(2014), Eq. (2.49), Blanchet (2024). Accordingly,
the following question arises: How is the exactness
achieved here?

Essentially, this is achieved here by the applica-
tion of especially useful distance measures and coor-
dinates systems:

Firstly, for each point P in the universe, there is
an adequate coordinate system (ACS), so that an ob-
ject at rest in the ACS has the absolute zero of velocity,
see Carmesin (2025e,c,d). This ACS is used here. As
a consequence, the velocity-terms in Post-Newtonian
approximation are zero.

Secondly, two measurable distance measures are
used, see Fig. (6): the light travel distance dLT , see
e. g. Condon and Mathews (2018), and the gravi-
tational parallax distance dGP , see e. g. Carmesin
(2019, 2021b, 2025e), it can also be measured as a cir-
cumferential distance, see Moore (2013), (Carmesin,
2023, section 2.6).

Hereby, according to the Hacking (1983) crite-
rion, the light travel distance dLT to a field generat-
ing mass M is real according to the Hacking criterion
Hacking (1983), as an increase of M can change that
distance dLT . In contrast, the gravitational parallax
distance dGP to a field generating mass M is ideal-
ized, as it represents the limit M to zero of the light
travel distance:

dGP = lim
M→0

dLT . (111)

This is a typical idealization based on a limit, see
Song (2002). Though the gravitational parallax dis-
tance dGP is idealized and not real, that distance dGP
can be measured, and that distance dGP provides the
1
R2 law, see Fig. (11).

Thirdly, the exact potential and field are deter-
mined as follows: For the case of a point P , the ideal-
ized gravitational parallax distance dGP from P to the
field generating mass M is measured or determined
by other means. With it, the potential and the field are
determined as a function of dGP = R, by using the
respective equations in this section and paper. The re-
sult is exact, as no approximation has been used in the
derivation of these equations.

In contrast, in Newton’s theory, the flatness of
space has been introduced as a postulate. Accord-
ingly, a user might use that postulate and the light
travel distance dLT 6= R, and the equations for po-
tentials and fields in Newton’s mechanics. In such a
postulate based determination of the potential or field,
the result is an approximation only.

Advantage of the exact potential and field: Al-
together, the indivisible VPs cause the transmission
of gravity, the exact gravitational potential, the exact
gravitational field and the exact curvature of space, in
an indivisible and impartible manner. Thereby, by
using the adequate coordinate system and the mea-
surable idealized gravitational parallax distance, rel-
atively short, highly structured, and clarifying equa-
tions can be used. Moreover, the results are parts of
the unification of relativity, gravity and quanta. This
unification uses the relative difference εL,rr, which is
based on both distance measures: the real dLT and the
idealized dGP .

7.4 Energy density of the gravitational field

In this section, the energy density uf of a gravitational
field ~G∗ is introduced and derived.

Measurement of the field’s energy density: The
energy density of the field can be measured as fol-
lows: A rest mass Mrest is distributed uniformly in a
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shell with a radius R and a small thickness dR, see
Fig. (12). That mass is lifted by a radial difference
∆R. Thereby, the required energy ∆EM is measured.
This energy is located in the field within the shell with
center M , thickness ∆R and radius R, see Fig. (12).
That shell has the volume

∆V = 4πR2∆R. (112)

Consequently, the absolute value of the measured en-
ergy density is as follows:

|uf | =
∆EM
∆V

(113)

The positive required energy compensates the energy
of the field in the shell, as the field in the shell with
volume ∆V is eliminated in the process of lifting the
mass. Consequently, the sign of the field is negative:

uf = −∆EM
∆V

(114)

Alternatively, this measured energy can be calculated:

Figure 12: A mass M (dark gray) in a shell at a radius
R is lifted to a radius R+∆R as follows: Differential
parts dM are lifted, while the rest Mrest is still at R.
Thereby the field ~Ggen = ~G∗ (medium gray) in the
shell with radius R and thickness ∆R becomes zero,
when the whole mass is at R+ ∆R.

Derivation of the field’s energy density: The re-
quired energy ∆EM can be calculated, see Carmesin
(2024a):

∆EM =
G ·M2∆R

2R2
. (115)

The measured energy density in Eq. (114) can be
calculated by inserting Eqs. (115 and 112) into Eq.

(114):

uf = −G ·M
2

8πR4
= −(~G∗)2

8πG
(116)

For comparison, Peters (1981) derived the same for-
mula for the energy density

uf = −(~G∗)2

8πG
. (117)

Peters (1981) derived this result in a Newtonian ap-
proximation.

In contrast, the exact energy density uf is derived
here. This is achieved with help of the exact field,
since no approximation is used here. This exactness
is achieved here with help of the distinction between
the two distance measures: the gravitational parallax
distance ∆R and the corresponding light travel dis-
tance ∆L.

Compensation of the negative field: The RGS in
Eqs. (84 and 87) is divided by 8πG, and ~Ggen = ~G∗

is used:

0 =

(
c · ∂∂τ

∑
j in S εL,rr,j

)2

8πG
− (~G∗)2

8πG
(118)

The sum in the above Eq. is identified with the
summed relative additional volume of the indivisible
VPs:

εL,rr,indivisible V Ps :=
∑
j in S

εL,rr,j (119)

With it, the RGS in Eq. (118) is as follows:

0 =
c2 · ε̇2

L,rr,indivisible V Ps

8πG
+
−(~G∗)2

8πG
(120)

The second fraction in the above Eq. is identified with
the energy density of the gravitational field uf .

0 =
c2 · ε̇2

L,rr,indivisible V Ps

8πG
+ uf (121)

As a consequence, the fraction in the above Eq. is an
energy density u. That fraction describes indivisible
VPs δVj that cause the field. Therefore, that fraction
describes the energy density of the indivisible VPs
δVj :

uindivisible V Ps =
c2 · ε̇2

L,rr,indivisible V Ps

8πG
. (122)

Consequently, the sum of the two energy densities is
zero:

uindivisible V Ps + uf = 0. (123)
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The energy density of one indivisible VP is obtained
by using ~Ggen,j = ~G∗j and by inserting the field in Eq.
(83) into Eq. (117):

uf,j = −
(~G∗j )

2

8πG
. (124)

Next, the rate gravity relation (see Eqs. 84 and 87) is
generalized to one indivisible VP:

c2ε̇2
L,rr,indivisible V P,j = (~G∗j )

2. (125)

Similarly, Eq. (123) is generalized to one indivisible
VP:

uindivisible V P,j + uf,j = 0. (126)

With these generalizations, the energy density in Eq.
(124) implies the energy density uindivisible V P,j of
one indivisible VP δVj as follows:

uindivisible V P,j = −uf,j =
c2 · ε̇2

L,rr,indivisible V P,j

8πG
.

(127)
These relations are results of the VD.

For comparison, expectation values of the field
have been derived from the VD as follows: Firstly,
a quantum field theory has been derived from the VD.
Secondly, the expectation value of a field has been
derived from the quantum field theory, see Carmesin
(2024a, 2025e).

Each indivisible VP has the energy density
uindivisible V P,j based on its rate. Moreover, each in-
divisible VP causes the energy density uf,j based on
its gravity. Furthermore, each indivisible VP propa-
gates at the speed c. Accordingly, such an indivisible
VP can be called rate gravity wave, RGW.

8 Emergent quantum postulates

The VD, the dynamics of the indivisible VPs, implies
the SEQ, the fundamental deterministic dynamics of
quantum physics. Accordingly, the following ques-
tion arises: Does the VD imply the stochastic dynam-
ics of quantum systems and the complete system of
quantum postulates?

In order to answer this question, the determinis-
tic time evolution is summarized in a postulate, and
mathematical consequences are derived first.

Then the stochastic dynamics and the complete
system of the quantum postulates are derived.

Additional rules about mixed states and about en-
tanglement in (Ballentine, 1998, p. 46) have been de-
rived from the VD in Carmesin (2024a).

8.1 Deduction of the postulates

Postulate about the deterministic time evolution:
The VD implies the postulate about the deterministic
time evolution of quanta, see (Kumar, 2018, p. 170):

Postulate about the deterministic time evolution

’The time evolution of the state vector is governed by
the time-dependent Schrödinger equation, SEQ, see
(Schrödinger, 1926, Eq. (4”)):

i~∂t|ψ〉 = Ĥ|ψ〉, (128)

where Ĥ is the Hamilton operator corresponding to
the total energy of the system.’ More generally, the
VD implies the GSEQ.

On Hilbert space: In this section, the solution
spaces of the SEQ and of the GSEQ are analyzed, in
order to derive quantum postulates in later sections.
In the corresponding paragraph, it is shown, that in-
divisible VPs can be described by the DEQ of VD,
and that indivisible VPs as well as objects at the speed
v = c are described by the quantum physical GSEQ.
In particular, objects with relatively small momentum,
p2

m2
0c

2 << 1, in leading order in p2

m2
0c

2 , are described by
the SEQ.

In this section, it is shown that the solutions of
the SEQ, of the GSEQ and of the DEQ of VD form
Hilbert spaces:

As usual, the Dirac notation is used: A wave function
Ψ is expressed by a so-called ket |Ψ〉.

Moreover, two wave functions, Ψ1(τ, ~L) and
Ψ2(τ, ~L), form a scalar product as follows:

〈Ψ1|Ψ2〉 =

∫
d3LΨ∗1(τ, ~L) ·Ψ2(τ, ~L) (129)

Hereby, the superscript ∗ marks the complex conju-
gate value, this notation is nowadays usual in quantum
physics, see e. g. Griffiths (1994), Ballentine (1998),
Scheck (2013), Kumar (2018).

Based on that scalar product, a state |Ψ〉 is multi-
plied by a normalization factor tn so that the following
scalar product is equal to one:

〈Ψ · tn|Ψ · tn〉
=

∫
d3rΨ∗(τ, ~L) ·Ψ(τ, ~L) · |tn|2 = 1 (130)

Next, it is shown that these states form a Hilbert space
H:

The states Ψ(τ, ~L) form a complete vector space, as
they are solutions of the (linear DEQ) SEQ. As a con-
sequence, they form a linear vector space, whereby
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they include all linear combinations of states Ψ(τ, ~L),
including Fourier integrals, for instance. These form
a complete Hilbert space H, see e. g. (Teschl, 2014,
p. 47) or (Sakurai and Napolitano, 1994, p. 57).

Generalization: The above derivation holds as well
for the GSEQ, including rates of change tensors ε̇L,p ·
tn. Consequently, such wave functions form a Hilbert
space as well.

Altogether, the solutions of the DEQ of volume dy-
namics (VD) form a Hilbert space H, the solutions of
the GSEQ form a Hilbert space H, and the solutions
of the SEQ form a Hilbert space H. These DEQs and
their respective Hilbert spaces, can describe VPs, in-
divisible VPs, matter, and radiation (the case of radia-
tion is analyzed in Carmesin (2024a)).

On measurements, operators, and possible out-
comes: In this section, the modeling of measure-
ments with help of the above Hilbert space of the so-
lutions of the deterministic dynamics of the GSEQ or
of the SEQ is elaborated. This will be used in later
sections in order to derive quantum postulates.

Firstly, the possible outcomes of a single measure-
ment process are derived.

Secondly, the necessity of an additional dynamics is
identified.

(1) In physics, in general, a measurement is described
as follows:

(1.1) A measurable physical quantity A of an object
is a function f of the mathematical description of that
object.

(1.2) Thereby, a change of the state should be as small
as possible.

(1.3) In general, the function f can be described in
linear order by an operator Â in Hilbert space, and by
a Taylor series thereof: f =

∑∞
k=0 ckÂ

k. Thereby,
the zeroth order is not essential in physics. Thus, f =∑∞

k=1 ckÂ
k.

Therefore, a measurable physical quantity A of
an object is described by a linear operator Â in the
Hilbert space of the states of the object.

(1.4) In the present case, the mathematical description
is a state |Ψ〉 in a Hilbert space.

(1.5) In linear order in Â, the function applied to the
state can be expressed as follows:

flinear(|Ψ〉) = Â|Ψ〉, in linear order. (131)

(1.6) In general, each state |Ψ〉 can be expressed as a
linear combination of eigenvectors |ΨA,n〉 with eigen-

values an. Here, the case of discrete and different
eigenvalues an, each with one eigenvector, is analyzed
in detail, as other cases can be analyzed analogously:

flinear(|Ψ〉) = Â|
∑
n

ΨA,n〉 =
∑
n

an|ΨA,n〉 (132)

(1.7) In order to keep the state unchanged in a single
measurement process, see part (1.2), that process must
act upon an eigenvector:

flinear(|ΨA,n〉) = Â|ΨA,n〉 = an|ΨA,n〉,
single measurement process. (133)

Therefore, the outcome of a single measurement
process of a quantity A of an object is one of the
eigenvalues of the operator Â corresponding to A.

(2) In general, a state is a linear combination of eigen-
vectors. But a possible outcome of each single mea-
surement process is one of the eigenvalues. As a con-
sequence, there must be a second dynamics that pro-
vides the choice of the eigenvalue that occurs in the
measurement.

(2.1) The second dynamics cannot be deterministic,
as the deterministic dynamics has been derived from
mathematics in a very general manner, hence the de-
rived deterministic dynamics is already very general.
Thus, the only possibility for a very general second
dynamics is a stochastic dynamics.

(2.2) Therefore, a general second dynamics must be a
stochastic dynamics.

This stochastic dynamics is derived next:

On the stochastic dynamics: In this section, the
stochastic dynamics is derived from the properties of
the indivisible VPs.

(1) For the case of a single indivisible VP δVj ,
the probability to measure an indivisible VP at an
event (τ, ~L) is proportional to the energy density
uindivisible V P,j of the indivisible VP δVj at that event
(τ, ~L).

(2) The energy density uindivisible V P,j is related to the
wave function as follows:

(2.1) For the case of a single indivisible VP δVj , the
wave function is the time derivative of its relative ad-
ditional volume, multiplied by a normalization factor
tn:

|Ψindivisible V P j〉 = tn · ε̇indivisible V P j . (134)

(2.2) The absolute square is applied to the above equa-
tion:

|Ψ2
indivisible V P j |
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= 〈Ψindivisible V P j |Ψindivisible V P j〉
= t2n · ε̇2

indivisible V P j . (135)

(2.3) The above equation is multiplied by 1 = 8πG
c2
·

c2

8πG :

|Ψ2
indivisible V P j | =

8πG

c2
t2n ·

c2ε̇2
indivisible V P j

8πG
. (136)

(2.4) In the above equation, the second fraction is
identified with the energy density of the indivisible VP
δVj :

|Ψ2
indivisible V P j | =

8πG

c2
t2n · uindivisible V P j .(137)

(3) As a consequence, the probability Pindivisible V P j

to measure an indivisible VP at an event (τ, ~L) is pro-
portional to the absolute square of the wave function:

Pindivisible V P j ∝ |Ψ2
indivisible V P j |. (138)

(4) For each measurable quantity A, and for the cor-
responding operator Â, the probability to measure an
eigenvalue an of an eigenvector |ΨA,n〉 has been de-
rived from the result in part (3) or in Eq. (138), see
Carmesin (2024a).

Therefore, the result in part (3) or in Eq. (138)
is the fundamental stochastic dynamics of quantum
physics.

(5) As a consequence, the VD implies both, determin-
istic time evolution as well as the stochastic dynamics
of quantum physics. Consequently, the VD implies
the full dynamics of quantum physics3.

Using the above mathematical results as well as the
deterministic and stochastic dynamics, the postulates
of quantum physics are derived next:

Derivation of the postulates: In this section, it is
shown how the quantum postulates in Kumar (2018)
are implied by the VD:

(1) The postulate about the deterministic time evolu-
tion has been derived.

(2) The postulate about probabilistic outcomes of
measurements is as follows, see (Kumar, 2018, p.
169, 170):

3This includes quantum field theory and the Dirac theory, as
both can be derived with help of the above deterministic and
stochastic dynamics, see e. g. Sakurai and Napolitano (1994),
Carmesin (2022b, 2023, 2024a, 2025e).

’If a measurement of an observable A is made in a
state |Ψ(t)〉 of the quantum mechanical system, then
the following holds:

[1] The probability of obtaining one of the non-
degenerate discrete eigenvalues aj of the correspond-
ing operator Â is given by

P (aj) =
|〈φj |Ψ〉|2

〈Ψ|Ψ〉
, (139)

where |φj〉 is the eigenfunction of Â with the eigen-
value aj . If the state vector is normalized to unity,
P (aj) = |〈φj |Ψ〉|2.

[2] If the eigenvalue aj is mj-fold degenerate, this
probability is given by

P (aj) =
Σ
mj
i=1|〈φj,i|Ψ〉|2

〈Ψ|Ψ〉
, (140)

[3] If the operator Â possesses a continuous spectrum
{a}, the probability that the result of a measurement
will yield a value between a and a+ da is given by

P (a) =
|〈φ(a)|Ψ〉|2

〈Ψ|Ψ〉
· da

=
|〈φ(a)|Ψ〉|2∫∞
−∞ |Ψ(a′)|2da′

· da (141)

This postulate can be derived from the stochastic dy-
namics. The derivation is presented in Carmesin
(2022b,a, 2024a).

(3) The postulate about Hilbert space is as follows,
see (Kumar, 2018, p. 168):

’The state of a quantum mechanical system, at a given
instant of time, is described by a vector |Ψ(t)〉, in the
abstract Hilbert spaceH of the system.’

For each given state of a quantum mechanical system,
the full dynamics should be determined. It is the de-
terministic and stochastic dynamics in the above pos-
tulates (1) and (2). It has been shown here, that the
states of the respective Hilbert space provide the full
information to derive the deterministic time evolution
(with the SEQ or with the GSEQ, more generally), and
to derive the correct probabilities for the probabilistic
outcomes. Therefore, ’the state of a quantum mechan-
ical system, at a given instant of time, is described by
a vector |Ψ(t)〉, in the abstract Hilbert space H of the
system’.

Moreover, it is insightful to realize that the correct
probabilistic outcomes are a consequence of the grav-
itational properties of the VD. Therefore, it is en-
lightening to understand that the basis of the quan-
tum postulates is a quantum gravitational foundation.
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As a consequence, a deep and fundamental under-
standing of quantum physics without understand-
ing gravity and quantum gravity is hardly possible.

(4) The postulate about the relation between observ-
ables and operators is as follows, see (Kumar, 2018,
p. 169):

’A measurable physical quantity A (called an observ-
able or dynamic physical quantity), is represented by
a linear and hermitian operator Â acting in the Hilbert
space of state vectors.’

This postulate is founded by the VD.

(5) The postulate about the relation between the possi-
ble outcomes of a measurement and the eigenvalues
is as follows, see (Kumar, 2018, p. 169):

’The measurement of an observable A in a given state
may be represented formally by the action of an op-
erator Â on the state vector |Ψ(t)〉. The only possible
outcome of such a measurement is one of the eigen-
values, {aj}, j = 1, 2, 3, . . . , of Â.’

This postulate is founded by the VD.

8.2 Analysis of the formal derivation of the
Schrödinger equation and quantum pos-
tulates

In this section, the above formal derivation of the
Schrödinger equation and quantum postulates is ana-
lyzed. Thereby, the properties of the volume portions
are worked out, that imply quantum physics, gravity
and relativity in a unifying manner, see also Fig. (20).

(1) The Space Paradox is derived from founded ex-
perimental results.

(2) The Space Paradox implies, that indivisible vol-
ume portions form space as a stochastic average. In
order to solve the Space Paradox, the dynamics of the
indivisible volume portions is analyzed as follows:

(3) The differential Eq. (DEQ) of the propagation
of the relative additional volume εL of indivisible vol-
ume portions is derived from the total derivative. As
the total derivative is a very reliable mathematical fact,
the resulting DEQ of the propagation is very founded.

(4) A dynamics underlying the relative additional
volume εL of indivisible is derived. For it, the time
derivative is applied to the DEQ of the propagation.
As a consequence, the dynamics of the time deriva-
tive ε̇L of the relative additional volume is derived.
The square of ε̇L, multiplied by c2

8πG is identified with

the energy density uindivisible V P =
c2ε̇2L
8πG of the gravi-

tational field that is inherent to εL. Consequently, ε̇L

is proportional to the square root of the energy density
of the relative additional volume εL. Therefore, the
dynamics of ε̇L is essentially underlying the physics
of the indivisible VP: ε̇L represents a derivative and a
root (multiplied by a constant) of the energy density
of εL.

(5) Essential properties of the underlying dynamics
in item (4) are derived: The DEQ of that dynam-
ics is a generalized Schrödinger Eq., which implies
the usual Schrödinger (1926) equation. Moreover, the
wave function in the Schrödinger Eq. (SEQ) is identi-
fied with the normalized version tn · ε̇L of ε̇L. There-
fore, the wave function is explained and derived,
this result is not provided by present - day quantum
physics, see Scheck (2013).

(6) As the derived SEQ is a linear DEQ, its solutions
form a linear vector space. That vector space is iden-
tified with the Hilbert space in quantum physics.

(7) The energy density uindivisible V P =
c2ε̇2L
8πG implies

the probabilistic dynamics of quanta, that has al-
ready been observed in many experiments, and that
is summarized in the respective quantum postulate
about the probabilistic dynamics.

(8) As the derived wave functions Ψ = tn · ε̇L fulfill
the correct deterministic dynamics, the SEQ, and as
Ψ fulfills the correct probabilistic dynamics of quanta,
these wave functions Ψ represent the quantum states.

(9) The items (4-8) imply the quantum postulates.

(10) Furthermore, the Schwarzschild metric is derived
from the dynamics of the volume portions.

(11) Moreover, from these postulates, the quantum
physics of mixed state, the Dirac equqtion, and the
quantum field theory can be developed, see Sakurai
and Napolitano (1994), Ballentine (1998).

Altogether, results (1-10) are derived here in a formal
and straight manner. Thereby, the five important prop-
erties of volume portions are derived and they are es-
sential:

an indivisible volume portion is not the sum of parts,

the DEQ of volume dynamics describes indivisible
volume portions,

indivisible volume portions have the gravitational
property,

indivisible volume portions can curve space and time,

indivisible volume portions fulfill the quantum postu-
lates.

Therefore these five properties form an impart-
ible characterization of cosmological space, and of
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the indivisible volume portions that form cosmolog-
ical space as a stochastic average, and that imply the
quantum properties.

9 Prediction of the ACS and of time

In this section, the solution of the problem of finding
an ACS is completed by predicting the velocity of the
ACS at each point in the universe. Moreover, that ve-
locity of the ACS of space and time provides the kine-
matic time difference as well as its fluctuation and its
time evolution.

9.1 Expectation values

In this section, we generalize the concept of adequate
frames with help of the wave function ψ.

Wave function near celestial bodies: For each ce-
lestial body Ci, the wave function ψi is derived. For
it, the field ~G∗exact,i caused by Ci at an event (τ, ~L) is
expressed in terms of its indivisible field parts, see Eq.
(80):

~G∗exact,i(τ,
~L) =

∑
j in S

~Gi,j(τ, ~L)

with ~Gi,j(τ, ~L) := c2 ∂

∂~L
εL,rr,i,j (142)

For instance, an event (τ, ~L) can be marked by a clock
C measuring its own time and position. Next, the di-
rection vector ~eri,j is applied, and the event (τ, ~L) is
not explicated, for short:

~Gi,j = −c2 ∂

∂L
εL,rr,i,j · ~eri,j (143)

Hereby, ~eri,j is the radial unit vector, and we used the
fact that εL,rr,i,j decreases as a function of L = |~L|.
We substitute ∂

∂L = ∂τ
∂L

∂
∂τ :

~Gi,j = −c2 ∂τ

∂L

∂

∂τ
εL,rr,i,j · ~eri,j (144)

We use ∂τ
∂L = 1

∂L
∂τ

= 1
c and ∂εL,rr,i,j

∂τ = ε̇L,rr,i,j :

~Gi,j = −cε̇L,rr,i,j · ~eri,j (145)

We identify the normalized wave function of Ψi,j :=

tn · ε̇L,rr,i,j of the field ~Gi,j , see Eq. (64), as well as
the non - normalized wave function ψi,j := ε̇L,rr,i,j :

~Gi,j = −cψi,j~eri,j (146)

These indivisible field parts are inserted in Eq. (142):

~G∗exact,i(τ,
~L) = −c

∑
j in S

ψi,j~eri,j (τ,
~L) (147)

In the following, ~G∗exact,i is sometimes denoted by ~G∗i ,
for short. The sum in the above Eq. is identified with
a corresponding product of a wave function ψi and a
direction vector ~eri :

~G∗exact,i(τ, ~L) = −cψi~eri(τ, ~L)

with ψi~eri :=
∑
j in S

ψi,j~eri,j (148)

Expectation value of the velocity: Next, the expec-
tation value 〈~vC〉 of the velocity ~vC of a clock C at an
event (τ, ~L) in the vicinity of N celestial bodies Ci is
derived.

As a consequence of Eq. (148), the field of the
celestial bodies represents their wave function as fol-
lows:

~G∗ =
i=N∑
i=1

~G∗exact,i = −c
i=N∑
i=1

ψi~eri (149)

Consequently, the expectation value of the velocity is
as follows:

〈~vC〉 =
〈
∑k=N

k=1 ψk~erk~̂vC
∑i=N

i=1 ψi~eri〉
〈
∑k=N

k=1 ψk~erk |
∑i=N

i=1 ψi~eri〉
(150)

The above products of sums are evaluated:

〈~vC〉 =

∑k=N
k=1

∑i=N
i=1 〈ψk~erk~̂vCψi~eri〉∑k=N

k=1

∑i=N
i=1 〈ψk~erk |ψi~eri〉

(151)

The above velocity ~vC can be measured, as shown
above. As a consequence, the velocity has been ex-
pressed by an eigenvalue generating operator ~̂vC , see
e. g. Kumar (2018), Carmesin (2024a). Thereby,
the eigenvalue is the velocity ~vC relative to ~G∗

i
, shortly

~vC, ~G∗
i

of the clock C relative to the field of the wave

function:

~̂vC |ψi~eri〉 = ~vC, ~G∗
i
|ψi~eri〉 (152)

Therefore, the expectation value in Eq. (151) is as
follows:

〈~vC〉 =

∑k=N
k=1

∑i=N
i=1 〈ψk~erk |~vC, ~G∗

i
|ψi~eri〉∑k=N

k=1

∑i=N
i=1 〈ψk~erk |ψi~eri〉

(153)
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In many cases, the field can be measured or derived.
Correspondingly, the product ψk~erk in the Hilbert
space vector 〈ψk~erk | can be substituted by the field ac-
cording to Eq. (148). Thereby, the factor −c cancels
out. Therefore, the expectation value is as follows:

〈~vC〉 =

∑k=N
k=1

∑i=N
i=1

~G∗k · ~G∗i · ~vC, ~G∗
i∑k=N

k=1

∑i=N
i=1

~G∗k · ~G∗i
(154)

A possible approximation: If the fields ~G∗exact,i
and ~G∗exact,k of the two celestial bodies are very small,
then the wave functions ψi and ψk of two different ce-
lestial bodies Ci and Ck are approximately (stochas-
tically) independent of each other, and they do hardly
interact with each other. This approximation might be
adequate for the case of very distant celestial bodies,
or for the case of planetesimals, see Karttunen et al.
(2007), or for the case of particles of dust or molecules
or atoms, for instance.

In that approximation, these wave functions are
orthogonal to each other in Hilbert space H. Conse-
quently, the expectation value in Eq. (153) is as fol-
lows:

〈~vC〉 =

∑k=N
k=1 ~vC, ~G∗

k
〈ψk~erk |ψk~erk〉∑k=N

k=1 〈ψk~erk |ψk~erk〉
(155)

Each of the above brackets is equal to the square of
the corresponding field divided by c2, see Eq. (146).
As a consequence, the expectation value in Eq. (155)
is as follows:

〈~vC〉 =

∑k=N
k=1 ~vC, ~G∗

k
· (~G∗k)2∑k=N

k=1 (~G∗k)
2

(156)

9.2 Fluctuations of time

In this section, the expectation value of the fluctuation
of time is analyzed and calculated.

Calculation of the velocity relative to the ACS: At
each point P , there are fields ~G∗k of the objectsCk that
dominate gravity at P . As a consequence, a clock C
near P has the expectation value 〈~vC〉 of its velocity in
Eq. (154). That Eq. (154) represents the expectation
value of the eigenvalues of the velocity relative to the
dominating fields ~G∗k. As the velocity relative to the
field is the same as the velocity relative to the ACS,
the expectation value in Eq. (154) is the expectation
value of the velocity of the clock relative to the local
ACS:

〈~vC〉 = 〈~vC,ACS〉 (157)

Therefore, for each point P and each clock C near
P , the expectation value in Eq. (154) is the quan-
tum physical best determination of the velocity of the
clock relative to the ACS:

〈~vC〉 = best determination of ~vC,ACS (158)

Kinematic time difference as a function of speed:
For each point P and each clock C near P , the ex-
pectation value of its velocity ~vC,ACS relative to the
ACS at P is the expectation value in Eq. (154). As a
consequence of the definition of the ACS, the veloc-
ity ~vC,ACS relative to the ACS provides the kinematic
fractional time difference δtkin,frac according to the
relativity formula as a function of ~vC,ACS :

δtkin,frac(vC,ACS) = −
〈~vC,ACS〉2

2c2
(159)

As the velocity is squared, δtkin,frac is a function of
the speed |~vC,ACS | =: vC,ACS .

Clock with minimal speed in the ACS: For each
point P and each clock C near P , the expectation
value of its velocity ~vC,ACS relative to the ACS at P
is the expectation value 〈~vC〉 in Eq. (154).

Therefore, the best calculable and applicable
value for ~vC,ACS is 〈~vC〉.

Consequently, the best calculable minimal speed
of the clock is the difference of the velocity ~vC,ACS
and the best calculable value 〈~vC〉:

|~vC,min| = |~vC,ACS − 〈~vC〉| (160)

Clock with maximal kinematic time difference:
As shown above, for each point P , and for each clock
C near P , the clock’s minimal speed in the ACS is
given in Eq. (160). As a consequence of the definition
of the ACS, that minimal speed provides the maximal
kinematic time difference as follows:

δtkin,frac,max = −
~v2
C,min

2c2
(161)

The maximal mathematically possible kinematic time
difference is zero, as the above Eq. represents a
parabola with its maximum at the origin. Insertion of
the minimal velocity in Eq. (160) yields the maximal
kinematic time difference as follows:

δtkin,frac,max = −(~vC − 〈~vC〉)2

2c2
(162)

Consequently, the expectation value of the maximal
kinematic time difference as follows:

〈δtkin,frac,max〉 = −〈(~vC − 〈~vC〉)
2〉

2c2
or

Hans-Otto Carmesin
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 28 Volume 11, 2026



〈δtkin,frac,max〉 = −
〈~v2
C〉 − 〈~vC〉2

2c2
(163)

It is the squared standard deviation σ2
vc of vC divided

by −2c2:

〈δtkin,frac,max〉 = −
σ2
vc

2c2

with σ2
vc := 〈~v2

C〉 − 〈~vC〉2 (164)

Interpretation: This expectation value of the kine-
matic fractional time difference 〈δtkin,frac,max〉 is
caused by the superposition of different gravitational
fields or field parts, caused by masses or dynamic
masses moving at different velocities. Accordingly,
this kinematic time difference is caused by such fluc-
tuations of the gravitational field at the considered
point P . As each gravitational field part is propor-
tional to a respective wave function, this expecta-
tion value of the kinematic fractional time difference
〈δtkin,frac,max〉 is caused by such quantum fluctua-
tions.

It is emphasized that 〈δtkin,frac,max〉 is a special
type of time fluctuations. It is not excluded that there
might occur other time fluctuations additionally.

9.3 Increasing precision of time

In this section, it is shown that the expectation
value of the kinematic fractional time difference
〈δtkin,frac,max〉 was very large in the early universe,
whereas it is very small in the present - day universe.
Therefore, it is shown that the precision of time in-
creases during the time evolution of the universe, and
correspondingly, these quantum fluctuations decrease
during the time evolution of the universe.

In the early universe, after the emission of the
CMB, the universe was filled with a gas of hydro-
gen atoms at a temperature of ca. T = 3000 K,
Unsöld and Baschek (1999). As a consequence of the
Maxwell distribution in a gas, see Landau and Lifs-
chitz (1980) §29, a gas with a temperature T and con-
sisting of particles, each with a mass mH = 1.6738 ·
10−27 kg, has the following expectation value of the
squared velocity:

〈v2〉 =
kB · T
m

= 2.47 · 107 m

s
= σ2

v (165)

Hereby, as the expectation value of the velocity of
the gas is zero, this value is also the squared stan-
dard deviation σ2

v of the velocity. As there is no huge
dominating mass in this gas in the early universe, this
squared standard deviation σ2

v additionally represents
the squared speed relative to the ACS. As a conse-
quence, the expectation value of the kinematic frac-
tional time difference 〈δtkin,frac,max〉 caused by these

quantum fluctuations (see Eq. 164) is as follows:

〈δtkin,frac,max〉 = − σ
2
v

2c2
= −1.37 · 10−10 (166)

In contrast, in the vicinity of celestial bodies, the ex-
pectation value of the maximal kinematic fractional
time difference in Eq. (164) has typical absolute val-
ues in the range 10−14 to 10−17, see Fig. (13).

Figure 13: Fluctuations at the planets: logarithm with
basis 10 of the negative expectation value of the kine-
matic fractional time difference 〈δtkin,frac,max〉 as a
function of the location x with x = 0 at Earth. At
each planet, there is a local minimum surrounded by
a region of relatively large values of that logarithm.
In this constellation, the planets and Sun are in a lin-
ear row, from left to right: Neptune, Uranus, Saturn,
Jupiter, Mars, Earth, Venus, Mercury and Sun with a
deep minimum. At this scale, the minima are not vis-
ible for the planets Mars, Earth, Venus, Mercury.

These two examples show the following:

During the time from the emission of the CMB un-
til today, the expectation value of the kinematic frac-
tional time difference 〈δtkin,frac,max〉 decreased by a
factor 104 or more. Correspondingly, these quantum
fluctuations of the time decreased by that factor. Con-
sequently, the time started with relatively large fluc-
tuations that decreased during the time evolution of
the universe. This is caused by the increase of hetero-
geneity during the time evolution of the universe.
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9.4 Interpretation of the constellation of
planets

The constellation of the planets in one line in Fig. (13)
is artificial. It has been chosen, in order to present
the planets, their surroundings, and the respective time
fluctuations as a function of the distance to Earth in a
two-dimensional graph.

In this graph, the absolute expectation value of the
kinematic fractional time difference |〈δtkin,frac,max〉|
= | − 〈v

2〉−〈v〉2
2c2

| is shown at a logarithmic scale. In the
vicinity of a single or very dominant celestial body,
this |〈δtkin,frac,max〉| is almost zero, this is the case
in the vicinity of Sun, see Fig. (13).

At other places in our planetary system, the su-
perposition of gravitational fields of different celes-
tial bodies is essential. This causes an increase of
|〈δtkin,frac,max〉|, as the fluctuations | − 〈v

2〉−〈v〉2
2c2

| do
increasingly deviate from zero, see Fig. (13).

Thereby, in the vicinity of a planet, there occur
two effects: In the very near vicinity of a planet, the
gravitational field of that planet becomes very dom-
inant, and this causes a decrease of absolute fluctu-
ations |〈δtkin,frac,max|, see Fig. (13). In the farther
vicinity of a planet, the gravitational field of the planet
and of Sun superimpose significantly. This causes rel-
atively large absolute fluctuations |〈δtkin,frac,max|, see
Fig. (13). For the case of the outer planets, the region
of such fluctuations is relatively large, whereas in the
case of the inner planets, the range of these effects
is relatively small, as the gravitational field of Sun is
very large and tends to dominate.

Altogether, in Fig. (13), these effects can be com-
pared for all planets in one graph.

10 Comparison with post-Newtonian
parameters

Phenomena of gravity and relativity have been mod-
eled with help of parameters in so-called post-
Newtonian parameter (PPN) descriptions, see e. g.
Chandrasekhar (1965), Will (2014), Liu and Liao
(2024), Losada et al. (2025). Such parameters can be
fitted experimentally. In the present theory, the funda-
mental physical constants G, c and ~ are used. With
it, the theory of gravity is derived without any approx-
imation and without any execution of a parameter fit.
Therefore, it is interesting to compare a PPN descrip-
tion with the present theory. This will be done for
few examples. The comparison of further examples is
planned in a future paper.

(1) For instance, the squared line element ds2 in Eq.
(2) has been investigated with help of PPN parameters

as follows, see Losada et al. (2025), Eq. (1):

ds2 = gttc
2dt2 + grrdr

2 + r2dΩ (167)

Thereby, spherical polar coordinates are used,
and r2dΩ represents the differential of the two-
dimensional subspace orthogonal to dr. In the PPN
formalism, the tensor elements are as follows:

gtt = 1− 2GM

c2r
+

2G2M2(βPPN − γPPN )

c4r2

−grr =
1

1− 2GM
c2r

=̇1 +
2GM

c2r
(168)

Hereby, βPPN and γPPN are parameters that have
to be investigated. An observation of the orbits of
the stars S2 and S62 near the galactic center provides
the parameter estimation or parameter fit, see Losada
et al. (2025)

γPPN = 1± 0.012 and βPPN = 1± 0.02. (169)

With γPPN = 1 = βPPN , Eq (168) is as follows:

gtt =

(
1− 2GM

c2r

)
−grr=̇1 +

2GM

c2r
(170)

This are the respective tensor elements of the present
theory. Consequqntly, the present theory is in accor-
dance with the result of Losada et al. (2025).

(2) From the squared line element in (1), the time di-
lation can be derived, and this can be interpreted with
help of the ACS of the present theory. For it, Eqs. (10,
11, 12) of the present theory are used:

Φ(r) = −GM
r
. (171)

This term represents a Newtonian potential. Ad-
ditionally this term represents exact gravity in the
framework of the derived theory of emergent gravity
(thereby, lengths of curved space are used for light
travel distances).

gtt = g00 = 1− 2|Φ|
c2

. (172)

dτ = dt ·
√

1− 2|Φ|
c2
− v2

c2
, near a mass. (173)

The present theory clarifies the meaning of the veloc-
ity v in the above equation: It is the velocity relative to
the ACS. This is an additional advantage of the present
theory. For comparison, usually, the purpose of the
PPN description is to study the effect of parameters
upon observable quantities.
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(3) As another example, the Hubble tension is ana-
lyzed, see Riess (2022), Liu and Liao (2024). The ba-
sic model of cosmolgy is the ΛCDM - model, see e. g.
Planck-Collaboration (2020). In that model, the Hub-
ble constantH0 of the universe should have a constant
value. However, observation shows that the value in
the early universe, obtained by the cosmic microwave
background (CMB), see Planck-Collaboration (2020),
differs significantly from the value in the late universe
at the five σ confidence level, see Riess (2022), Gal-
bany (2023).

In the PPN framework, the above Eq. (168) is
approximated at linear order for 2|Φ|

c2
� 1:

gtt = 1− 2
GM

c2r︸ ︷︷ ︸
ΨPPN

and − grr=̇1 + 2
GM

c2r︸ ︷︷ ︸
ΦPPN

(174)

Thereby, in the PPN description, the two parameters
ΨPPN and ΦPPN are introduced as values for the
above indicated terms. In the PPN framework, the ra-
tio of these parameters is an additional parameter

γPPN =
ΦPPN

ΨPPN
. (175)

Gravitational lenses can simultaneously constrain this
parameter γPPN and the values of H0, see Losada
et al. (2025). This does not yet explain the Hubble
tension.

For comparison, an advantage of the present the-
ory and of the exact gravitational potential of emer-
gent gravity used in that theory is as follows: That
theory explains and derives the Hubble tension in pre-
cise accordance with observation within the errors of
measurement. Thereby, no fit is executed, and no un-
founded hypothesis is used or proposed, see the path
of derivation in Fig. (20) and e. g. Carmesin (2025e).

Altogether, the present theory uses emergent grav-
ity with an exact potential, and relativity with a de-
rived ACS. On that basis, several results have been
achieved, and this substantiates the effectiveness of
the exact potential:

(1) An explanation and derivation of the PPN param-
eters γPPN = 1 and βPPN = 1 is provided, and it
is in accordance with the observation by Losada et al.
(2025).

(2) The PPN parameters γPPN = 1 and βPPN = 1
are inherent to the Eq. of time dilation (Eq. 173), and
the meaning of the velocity in that Eq. is explained
and derived here: v is the velocity relative to the ACS.

(3) An explanation and derivation of the Hubble ten-
sion is provided, see e. g. Carmesin (2025e).

Figure 14: A possible journey from Earth to the
Moon is sketched. Thereby, a constellation with Sun,
Moon and Earth in a straight line is investigated.
Hereby, a Sun Centered Inertial (SCI) coordinate sys-
tem is used.
In this journey, the spacecraft moves at the straight
line from Earth to Moon. Each point P on that straight
line moves.
The SCI system is marked by two direction
vectors ~ex and ~ey. The velocities of Earth
~vorbit,⊕ around �, of the Moon ~vorbit,$ around ⊕ and
of P , ~vorbit,P around ⊕, are marked by vectors. The
velocity of the ACS, ~vACS,SCI , is a linear combina-
tion of ~vorbit,⊕ around � and ~vorbit,$ around ⊕. Con-
sequently, ~vACS,SCI is parallel to ~ey, and the corre-
sponding speed |vACS,SCI | is shown in Fig. (16).

11 An Artemis Moon mission predic-
tion

The NASA plans to build a sustained station on the
Moon in the so-called Artemis Moon mission NASA
(2022), taking place from 2022 to 2030 and beyond.

In that mission, the kinematic time difference in
the space between Earth and Moon can be investi-
gated. With it, the present theory can be tested. As
the precise routes and times of the spaceflights of the
Artemis mission are not known in advance, a possible
journey from Earth to the Moon is investigated here as
an example:

11.1 Trajectory models

Two trajectory models are investigated here:

(1) �-$-⊕-line:

In this trajectory model, Sun, Moon and Earth are at a
straight line, see Fig. (14).

The journey takes place at the straight line from Earth
to the Moon. For each point P of that straight line,
the velocity of the ACS, ~vACS,SCI is derived. Hereby
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and in this section, the approximation in Eq. (156) has
been used:

(1.1) The velocity of the ACS, ~vACS,SCI , relative to
the SCI is equal to the expectation value 〈~vC〉 of a
clock in Eq. (156). In this expectation value 〈~vC〉,
for each celestial body k, the velocity ~vC, ~G∗

k
(which

describes the ACS relative to k) is contributed. There-
fore, 〈~vC〉 represents the clock’s velocity relative to
the ACS. It is shown in Fig. (16).

(1.2) The velocity of the Artemis rocket relative to the
ACS is estimated:

In the Artemis I mission, the rocket needed ca. t =
5 days from Earth to the Moon. The distance is ca.
d = 380 000 km. Consequently, the speed relative to
Earth is estimated by

vrocket,⊕ =
d

t
= 880

m

s
and

~vrocket,⊕ = −~ex · vrocket,⊕. (176)

Earth’s velocity relative to SCI is ~v⊕,SCI = ~ey ·
29800 m

s . Thus, the rocket’s velocity relative to Sun
is

~vrocket,SCI = ~vrocket,⊕ + ~v⊕,SCI

= −~ex · 880
m

s
+ ~ey · 29800

m

s
. (177)

Thence, the rocket’s velocity relative to the ACS is

~vrocket,ACS = ~vrocket,SCI − ~vACS,SCI with
~vACS,SCI = ~ey · vACS,SCI . (178)

It provides the time difference

δtkin,frac = −
~v2
rocket,ACS

2c2
. (179)

(2) �-$-⊕-triangle:

In this trajectory model, Sun, Moon and Earth form a
triangle with a right angle at Earth, see Fig. (15).

The journey takes place at the straight line from Earth
to the Moon. For each point P of that straight line, the
velocity of the ACS, ~vACS,SCI is derived:

(2.1) The velocity of the ACS, ~vACS,SCI , relative to
the SCI is equal to the expectation value 〈~vC〉 of a
clock in Eq. (156).

(2.2) The velocity of the Artemis rocket relative to the
ACS is estimated:

vrocket,⊕ = 880
m

s
and

~vrocket,⊕ = ~ey · vrocket,⊕. (180)

Figure 15: A possible journey from Earth to the
Moon is sketched. Thereby, a constellation is inves-
tigated with Sun, Earth and Moon forming a triangle
with a right angle at Earth.

Earth’s velocity relative to SCI is ~v⊕,SCI = ~ey ·
29800 m

s . So, the rocket’s velocity relative to Sun is

~vrocket,SCI = ~vrocket,⊕ + ~v⊕,SCI

= ~ey · 880
m

s
+ ~ey · 29800

m

s
. (181)

The rocket’s velocity relative to the ACS (Eq. 178 and
the resulting time difference in Eq. (179) are used.

11.2 Prediction

Two possible constellations of the Sun Earth Moon
system are considered, see section (11.1):

(1) �-$-⊕-line:

In this constellation, Sun, Moon and Earth are in a
straight line, see Fig. (14).

For each point P at that journey, the velocity of the
ACS relative to the SCI is presented in Fig. (16).
At Earth and at the Moon, the ACS is at these ce-
lestial bodies. Consequently, the speed of the ACS,
vACS,SCI , is approximately equal to the speed v ≈
29200 m

s of these celestial bodies relative to Sun.
In contrast, between Earth and the Moon, close to

the Moon, the gravitational field of Sun dominates.
Consequently, the ACS moves predominantly with
Sun. I. e. the speed of the ACS, vACS,SCI , is rela-
tively small.

The fluctuation of the kinematic time difference in
Fig. (18) at the ACS is relatively small compared to
the kinematic time difference of the rocket, see Fig.
(17). Consequently, these fluctuations are not very es-
sential at an Artemis journey from Earth to the Moon.
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Figure 16: Earth Moon System: Speed |vACS,SCI |
of the ACS relative to the Sun Centered Inertial (SCI)
system as a function of the location x with x = 0
at Earth. At each celestial body, there is a local maxi-
mum. The GCRS and the Lunar Centric Celestial Ref-
erence system (LCRS), see Kopf (2023), are marked
by the high speeds relative to the BCRS.

(2) �-$-⊕-triangle:

In this trajectory model, Sun, Moon and Earth form
a triangle with a right angle at Earth, see Fig. (15).
The resulting kinematic fractional time difference is
shown in Eq. (19). It is similar to the time difference
in Fig. (17) of constellation (1) in Fig. (14). There-
fore, in principle, the interpretation is the same in both
cases.

In general, the kinematic time dilation δtkin,frac of
the rocket predicted here can be tested at a real
Artemis journey. Thereby, the real constellation of
Sun, Earth and Moon as well as the precise route and
schedule of velocities should be used for a precise
comparison. The time evolution of the kinematic time
dilation δtkin,frac of the rocket will in principle be
similar to those in Figs. (17 and 19).

12 Applications to geoinformatics

Geoinformatics is an essential tool for the investi-
gation of systems at Earth, planets and space, see
Mandla (2025), Carmesin (2025c), Carmesin (2025d).
Accordingly, geoinformatics has many methods and
applications, see e. g. the textbook Lange (2023).

The purpose of the present investigation is to ana-
lyze possible consequences of the above achieved re-
sults for geoinformatics. An example is the prediction

Figure 17: The kinematic fractional time difference
δtkin,frac as a function of the location x at the Artemis
journey from Earth to the Moon in Fig. (14).

about the Artemis Moon mission in section (11). Sim-
ilar consequences will be derived4.

Physics implies limits about the measurement of data
in geoinformatics. In the context of the above investi-
gations, such limits are analyzed:

(1) Screening:

Among the four fundamental interactions, gravity is
the only interaction that is not screened. Conse-
quently, gravity is especially adequate for investiga-
tions of objects, processes or events inside Earth.
These include resources, ore, water, continental drift,
early indications of future Earth quakes, early indica-
tions for volcanic eruptions.

As gravity modifies the measurable kinematic
and gravitational time differences, clocks are essen-
tial tools in this context. As gravity curves space,
also light can be a useful tool in this field, see e. g.
Carmesin (2025h).

(2) Resolution:

An atomic lattice clock can have a fractional time dif-
ference of |δtfrac| < 10−18, see e. g. Hinkley (2013),
Müller et al. (2018).

However, the measured fractional time difference
δtfrac is the sum of the kinematic fractional time dif-
ference and the gravitational fractional time differ-

4It would be beyond the scope of the present investigation to
apply these consequences to existing data sets systematically, or
to apply these consequences to current measurement tools. Such
an application has been developed in Carmesin (2025f,g,h).
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Figure 18: Time fluctuations in the Earth Moon sys-
tem are shown for the journey in Fig. (14): Logarithm
with basis 10 of the negative maximal kinematic time
difference δτkin,frac,min = 〈v

2〉−〈v〉2
2c2

as a function of the
location x with x = 0 at Earth. At each planet, there
is a local minimum surrounded by two local maxima
of that logarithm.

ence:

δtfrac = δtkin,frac + δtgrav,frac (182)

Thereby, the gravitational fractional time difference
provides valuable information about the gravitational
potential, see e. g. Müller et al. (2018), Grotti et al.
(2024), Carmesin (2025c).

As a consequence, it is necessary to determine the
kinematic fractional time difference, in order to obtain
the gravitational fractional time difference:

δtgrav,frac = δtfrac − δtkin,frac (183)

For this purpose, the absolute zero of the kinematic
fractional time difference δtkin,frac discovered here is
a very important tool: It provides a universal zero as
a reference. With it, deviations can be measured and
mapped, similar to the mapping of magnetic variation
or magnetic deviation.

The measurement of δtkin,frac can be achieved
on the basis of the ACS: In many cases, the velocity
~vACS can be determined with help of the relation to
the gravitational field derived here. With it, the veloc-
ity ~vC,ACS of a clock C relative to the ACS can be
measured, for instance with help of the Doppler ef-
fect. With it, the kinematic fractional time difference
δtkin,frac can be measured at a very high precision.

Thereby, variations of the kinematic time dilation
as a function of the locations of nearby celestial bodies
can be predicted and used for corrections, see Figs.
(16 and 18).

Figure 19: The kinematic fractional time difference
δtkin,frac as a function of the location x at the Artemis
journey from Earth to the Moon, whereby the Moon is
located in the ~ey direction from Earth, see Fig. (15).

Similarly, quantum fluctuations of time differ-
ences can be included in the analysis. Hereby, such
time differences can be reduced by averaging the time
during a time interval τ . This reduces the relative er-
ror by the factor

√
τ , see e. g. Hinkley (2013), Bandhi

(2023).
Including these results and methods should im-

prove the interpretation of the values measured with
clocks, as these values still include empirically ob-
servable deviations from more precise geodetically
measured values, see e. g. Grotti et al. (2024),
Carmesin (2025c).

In each precise time measurement, the kinematic
time difference δtkin,frac should be included, as at a
relative error of measurement of 10−18, it corresponds
to the following speed

v =
√

2c2|δtfrac| = 42
cm

s
, (184)

this is a very small velocity, which can easily occur
relative to the ACS. For comparison, at Earth’s equa-
tor, a clock has a speed relative to the ACS of 465 m

s .
When the kinematic time difference is subtracted

and the gravitational time difference is obtained with
the error of measurement of 10−18, it can provide the
height at the following error of measurement:

∆h =
|δtgrav,frac| · c2

g
= 9.2 mm. (185)

Hereby, the gravitational potential ∆Φ and its relation
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to the gravitational fractional time difference

δtgrav,frac =
∆Φ

c2
=
−g · h
c2

(186)

have been used.
The above high accuracies achieved by optical

atomic lattice clocks illustrate the need of a fun-
damental understanding and evaluation of kinematic
time differences for up to date applications in geoin-
formatics.

13 Hypothetic deductive method II

The hypothetic deductive method outlined in sec-
tion (6.1) is used in this paper. Hypotheses that are
founded by very reliable observations are used as a
basis.

Therefrom, new results are deduced. The deduced
results are compared with respective empirical find-
ings, in this section. For on overview of the path of
derivations see Fig. (20).

Figure 20: The path of derivations in this paper is rep-
resented by this cognitive map.

The quantum postulates are deduced here and
confirmed by many observations, see e. g. Ballentine
(1998), Scheck (2013).

Laws of gravity are deduced here and confirmed
by many observations, see e. g. Tipler and Llewellyn
(2008), Landau and Lifschitz (1960).

The curvature of space in the vicinity of a mass is
derived. This is confirmed by observation, see e. g.
Hobson et al. (2006).

For the vicinity of Earth, the ACS is shown to be
the ECI. This is confirmed by observation, see Starker
et al. (1985), Carmesin (2025c), Soffel (2003).

For the places in the planetary system that are far
away from celestial bodies except Sun, the ACS is
shown to be the BCRS or the SCI. This is confirmed
by observation, see Soffel (2003).

For a path from Earth to the Moon, the expecta-
tion value of the velocity 〈~vACS,SCI〉 is deduced as a
prediction.

For a path from Earth to the Moon, the expecta-
tion value 〈δtkin,frac,max〉 is deduced as a prediction.

For a path in the planetary system, the expectation
value 〈δtkin,frac,max〉 is deduced as a prediction.

For the time evolution of the universe since
the Big Bang until today, the expectation value
〈δtkin,frac,max〉 is deduced as a prediction in princi-
ple.

14 Conclusion

Problem of finding the adequate coordinate system
(ACS): The International Astronomical Union (IAU)
proclaimed the problem of finding an ACS for the de-
scription of space and time in nature Soffel (2003).

Critical discussion of an ACS: A coordinate system
is a tool for the coordination of partial quantities. For
instance, the quantity length x in the ~ex direction and
the quantity length y in the orthogonal ~ey direction
are coordinated to the length r =

√
x2 + y2 in the ra-

dial direction, according to the theorem of Pythagoras.
This theorem describes adequately characteristics of
flat space in nature. More generally, the mutually or-
thogonal direction vectors ~ex, ~ey and ~ez can be used in
order to represent the properties of three-dimensional
flat space in nature adequately.

More generally, space and time can be coordi-
nated in a Minkowski space Minkowski (1908) with
mutually orthogonal direction vectors ~et = ~ex0 , ~ex, ~ey
and ~ez , in order to represent the properties of four-
dimensional flat spacetime in nature in a partially ad-
equate manner. However, the twin paradox Langevin
(1911), and additionally, the problem of finding an
ACS, see Soffel (2003), indicate that the role of the
translatory velocity of the coordinate system must be
considered in an adequate manner. Moreover, the
Foucault pendulum Foucault (1851) shows that the
ACS cannot have an arbitrary rotation.

Accordingly, an ACS is a tool for the precise char-
acterization of the properties of space and time in na-
ture in an adequate manner.

Similarly, a spectrum is an adequate tool in order
to describe light in nature, as the spectrum includes
the wavelengths, the corresponding rainbow that we
see, and the energy spectrum of quanta of light Planck
(1900). As a first step, Foucault discovered that the
adequate coordinate system cannot rotate in an arbi-
trary manner Foucault (1851).

Discovery of the ACS: Here, the ACS is discovered
by two independent methods: observation and deriva-
tion. Thereby, for each point in the universe, the ve-
locity of the ACS is derived in a uniquely determined
manner. Thereby, for each point P in the universe,
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and for each object C near P , the kinematic time dif-
ference of C, the velocity ~vC,ACS of C relative to
the ACS, the kinetic energy and the relativistic energy
E = E0/

√
1− ~v2

C,ACS/c
2 are derived in a uniquely

determined manner. Especially important is the case,
in which C is at rest in the ACS, ~vC,ACS = 0. In
that case, the kinematic time difference is zero, every-
where in the universe. Consequently, this represents
the absolute zero of the kinematic time difference, of
the motion and of the kinetic energy. This holds in non
- quantized physics or classical physics. More gener-
ally, there occur quantum fluctuations of ~vC,ACS .

Discovery of the indivisible parts of space, based
on the ACS: Based on the above relativistic energy,
for space in nature, the space paradox, see Carmesin
(2025a), is derived. As a consequence, space in nature
is a stochastic average of indivisible portions. A por-
tion of volume in nature or of space in nature is called
volume portion (VP).

Discovery of the dynamics of volume portions:
Based on mathematics, the dynamics of VPs is de-
rived Carmesin (2021b).

Discovery of the Schrödinger equation (SEQ):
Based on the dynamics of VPs, the SEQ and a gener-
alized Schrödinger equation (GSEQ) are derived. Ac-
cording to the Higgs mechanism, volume can make
a phase transition to mass. Consequently, the de-
rived SEQ is derived for mass as well. Moreover, the
GSEQ describes electromagnetic radiation addition-
ally Carmesin (2024a, 2021c, 2022c). In this manner,
the following emerges from the ACS: the indivisible
volume portions, their description by the volume dy-
namics, their description by the GSEQ, the descrip-
tion of mass (a transformed version of vacuum or of
volume in nature) by the SEQ, and the SEQ in general.

Discovery of gravity and curvature of space and
time: Based on the dynamics of VPs, the following is
exactly derived, discovered, and (ultimately) emerg-
ing from the ACS: the exact gravitational potential as
an average of relative additional volume of indivisible
VP multiplied by −c2, the corresponding exact grav-
itational field, the curvature of spacetime in the same
averaged (or non - quantized) manner.

Discovery of the quantum postulates: Based on
the dynamics of VPs, on the SEQ, and on the emer-
gent gravity, the quantum postulates are derived, ex-
plained, and (ultimately) emerging from the ACS, see
Carmesin (2022b), Carmesin (2022a). Consequently,
these so-called quantum postulates are no longer pos-
tulates, but they are derived, explained, and founded
rules of physics. Therefore, the ACS and the VPs
imply quantum physics as well as gravity, so that a

bridge between quanta and gravity emerges, which
can be interpreted as a unification of gravity and
quanta.

Prediction of the ACS: Based on the derived so-
called quantum postulates, for each point in the uni-
verse, the velocity of the ACS is derived. This com-
pletes the solution of the problem proclaimed by the
IAU, the problem to find an ACS. Here, a test of this
prediction is elaborated: The kinematic time differ-
ence can be measured onboard the spacecraft of the
Artemis mission on its way from Earth to the Moon.

Further predictions and evidence: Further evidence
for the theory of VPs has been achieved as follows:
Firstly, the energy density of cosmological vacuum
or of space or of dark energy has been derived,
see Carmesin (2021b), Carmesin (2024c), Carmesin
(2024a), Carmesin (2025e). Secondly, the Hubble ten-
sion has been explained and the value of the Hubble
constant H0 as a function of the redshift z has been
derived and predicted, see e. g. Carmesin (2021b),
Carmesin (2024b), Carmesin (2024a), Carmesin
(2021a), Carmesin (2025b), Carmesin (2025e). These
two derived results are in precise accordance with ob-
servation, and thereby no fit has been executed, and no
postulate or unfounded hypothesis has been proposed
or used.

Application to geoinformatics: Coordinate systems
are an essential tool of geoinformatics Lange (2023).
The ACS clearly improves the present - day coordi-
nate systems. This can clearly improve the accuracy
of measurements, data, results and products in geoin-
formatics (see section 12).
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