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Abstract: - St. Hawking proved that the conformal diffeomorphisms of the space-time manifold can be 
represented by autohomeomorphisms of a Zeeman topology [17]. The corresponding physical invariants to this 
symmetry group are well known [17]. For accelerated reference frames, there are contradictions in   
measurements of observables, since the locally used Lorentz transformations require inertial frames that are 
compatible [13]. I use a finer Zeeman topolo y generated by piecewise timelike geodesics representing inertial 
motions. The corresponding autohomeomorpism group preserves the Nonregularity of this topology . The non-
regularity was proven by the Bulgarian topologist Strassimir Popvassilev [12], [9].  We construct the possible  
relationship for inertial frames by the aid of this proof . 
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1 Introduction 
Symmetry groups in connection with physical laws 
form an important component in mathematical 
physics. In electrodynamics, for example, the group 
of conformal diffeomorphisms for space-time 
manifolds plays an important role in energy 
transport in the electrovacuum. 
Hawling King and McCarthy proved a 
representation of this group by the 
autohomeomorpism group of a Zeeman topology 
induced by continuous time-like worldlines in the 
space-time manifold.  
Heinzmann and Mittelstaedt [13] showed for 
accelerated reference frames that the tensor 
character is locally preserved via Lorentz 
transformations, but the measurement of the 
observables can lead to physical nonsense. 
(Radiating or non-radiating electron). 
 

2 Problem Formulation 
If an initial inertial frame can be transformed 
suitably, this contradiction would not arise. In order 
to be able to get a mathematical extension for 
inertial systems in the space-time manifold, the 
following way could be successful. 

I. Definition of a strictly finer Zeeman 
topology by reduction to piecewise time-
like geodesics Zpg. 

II. Use of the topological property that Zpg is 
not regular, and use of the construction in 
Popvassilev's proof.  

III. Transport of the construction with the help 
of the autohomeomorpism group H(Zpg). 

IV. Interpretation of the time-like geodesics as 
force-free motions and the representation of 
unertial frames bytheis assumption.   

The local relationship of inertial frames is in 
discussion. 
 
2.1 Zeemantopologies and group 

representations 
On a topological space X  be given a family  S of 
subsets š ̣ carring the subspace topology. The finest 
topology Z(X,S) which coincids on every subspace š ̣
with the topology X is called Zeemantopology on X 
induced by S. 
For our application it is important the uniqueness of 
this topology and representing some information 
about the subspace family.   
E.C. Zeeman was able to show that the Lorentz 
group agrees with the autohomeomorpism group H 
(Z) by choosing X as the Minkowski space and the 
family S of the time-like world lines [3]. 
Many generalities on space-time manifolds were 
investigated [4], [5], [7]) using different global 
conditions of causality to get easier mathematical 
proofs.  
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Especially we remember the result of Hawking, 
King and McCarthy [7]. X be the space-time 
manifold topology and S be the family of 
continuous time-like paths. This Zeeman topology 
was called path topology Po. Their main result has 
been  
Proposition: The group of autohomeomorhisms 
H(Po) of Po is equal to the group of conformal 
diffeomorphisms  ConDiff in the space-time 
manifold M.  In their proof the important relation 
H(Po) part of H(M) was guaranteed by a global 
causality  condition. Malament [8] proved his result 
without global causal condition. 
 
2.2 Nonstandard topological extension 

The topology Po does not distinguish geodesics 
from arbitrary continuous time-like paths. For 
our purpose, the difference between force-free 
and accelerated movements is essential. 
The Zeeman topology Zg, which is defined by 
the family S of time like geodesics is equal to 
the Zeeman topology Zpg which is defined by 
the family S of piecewise time like geodesics. 
Therefore will a Zpg-homeomorphism only 
transform invariantly time-like geodesics.  
From many investigated properties of Zpg [9], 
[10], [11], [12] we need in this paper the 
negative separation property Non-regular of 
Zpg. 
Popvassilev [12] proved the Non regularity of 
Zpg . Therefore is Zpg not completely regular.  
 The continuality of continuous real-valued 
functions is only supported on completely 
regular spaces [15]. The topology Zpg supports 
the continuation of geodesic pieces from border 
points into the interior of open charts of the 
manifolds with the help of non-regularity. In 
Popvassilev's proof, it is essentially used that 
the geodesists are of   second category. 
We remark that most proofs where developed in 
Minkowski-space using timelike lines and 
generalized by exponential maps to space-time 
manifolds. 
 
2.3 Autohomeomorpism group H 

The additional group of auto homeomorphisms 
H(Zpg) to the group lf conformal 
diffeomorphisms represented by H(Po) has to 
be carefully interpreted. Regarding auto 
bijections which leave invariant piecewise 

geodesics there are interesting geometric 
examples using the dimension greater or equal 
3. [16]. There exist deformations of hyperplanes 
in space-time, which can have physical 
interpretations concerning symmetry and 
invariance. We use only the transformation of 
the Nonregularit by the Zpg-homeomophism. 

 
2.4 The principle of relativity 
In the work of Heintzmann and Mittelstaedt [13] it 
is shown that various physical laws apply to 
accelerated reference frames only to a limited 
extent.  
A  physcal law  wellformulated  by tensoanalysis 
can be transformed  locally by Lorentzian 
transformations in an accelerated frame. The 
character of tensors will remain but the 
measurements of observables is difficult. An 
example is the radiation of an accelerated electron. 
The transformation into an accelerated reference 
frame, where the electron does not move would lead 
to non radiation.  
 
 
3 Solution 
An inertial system in the space-time manifold is 
defined by all locally existing time-like geodesics, 
which we assume represent force-free motions.  
In Minkowski space, we define analogously with 
time-like straight lines. The Zeeman topologies Zpg 
uniquely creates a structure whose invariance, 
expressed by the autohomeomorpism group H(Zpg), 
is essential for the appropriate definition of an 
inertial frame.  Locally occurring changes due to 
symmetry transformations can be explained with the 
help of the nonregularity of Zpg.  Consider a Zpg-
closed densely lying subset A located in the open 
interior of a local time cone, which is not Zpg-
separable from the starting point Q of the time cone. 
The use of a time-like geodesic piece through Q 
allows the Interpretation ofpermissible changes due 
to Zpg-autohomeomorphism.     
 
The Zpg-autohomeomorpisms   allow   unsteady 
transformations, but preserve the property that the 
piecewise timelike geodesics consist of finitely 
many tricks.  
 
The contradiction in the example of a radiating 
electron is resolved by the use of permissible 
transformations of an inertial frame. 
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4. Conclusion 

In this work, we have investigated the 
topological structure of inertial systems on 
space-time manifolds through the lens of a 
strictly finer Zeeman topology. This topology 
not only reflects the physical distinction 
between inertial (force-free) and accelerated 
motion but also incorporates essential 
topological features—most notably its 
nonregularity, as established by Popvassilev—
which enable meaningful interpretations of 
transformations between inertial frames. By 
employing the group of autohomeomorphisms, 
we extend the representation of symmetries 
beyond the conformal group traditionally 
associated with the path topology. These 
homeomorphisms preserve the structure of 
inertial motion while admitting certain 
discontinuities that are still physically 
permissible, offering a refined framework for 
analyzing transformations in space-time. This 
approach resolves long-standing contradictions 
in the treatment of accelerated frames—such as 
the paradox of a radiating versus non-radiating 
electron—by allowing for more nuanced 
transformations within a topologically 
consistent model. Our construction bridges the 
gap between mathematical rigor and physical 
intuition, suggesting that the topology of space-
time plays a foundational role in the 
formulation and interpretation of the principle 
of relativity. Ultimately, this study contributes 
to a deeper understanding of the interplay 
between geometry, topology, and physics, 
offering a potential pathway toward a more 
complete theory of reference frames within the 
general framework of space-time manifolds. 
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