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Abstract: - The stability of the equilibrium of a compressible gas placed in a limited region in a gravity field is 
investigated. The same temperature is maintained on all boundaries of the region. The stability of the static 
equilibrium of a compressible gas is analyzed in a linear approximation. The obtained data are supplemented by 
the results of solving a system of complete nonlinear equations describing the flows of a compressible gas. The 
characteristics of the obtained nonstationary solution are discussed. 
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1 Introduction 
It is known [1] that in an incompressible medium 
considered within the framework of the Boussinesq 
approximation, in the absence of a vertical 
temperature gradient, only monotonically decaying 
motions are observed. Moreover, with this 
approach, the density depends only on the 
temperature, and the dependence on pressure is 
neglected [1]. Thus, in the absence of a vertical 
temperature gradient, there is also no heterogeneity 
in density in the vertical direction, which is the 
reason for the attenuation of the perturbations of the 
static solution. 

But in a compressible medium, the dependence 
of density on pressure becomes significant [2]. 
Pressure plays an active role here and its change, in 
principle, can generate non-uniformity in density in 
the vertical direction with the development of 
instability of the static solution. However, due to the 
extremely poor study of slow flows of a 
compressible medium (small Mach numbers) and 
technical difficulties, the question of the feasibility 
of such a scenario is not discussed in the literature in 
any way [3]. 

However, the calculations performed in this 
work convincingly showed that when instability of 
the static regime develops in a compressible 
medium under the action of gravity, some heating of 
the medium is observed, which makes the flow in 
such a medium physically similar to Rayleigh-
Benard convection, which occurs when a layer of 
gas or liquid is heated from below [4]. 

However, in the overwhelming majority of 
works, Rayleigh-Benard convection is considered as 
an incompressible fluid flow within the Boussinesq 
approximation [1,4]. And convection in a 
compressible gas medium, even in such a relatively 
simple case, is poorly understood. It has been shown 
that on a laboratory scale (with a layer height of the 
order of several centimeters), the compressibility of 
the medium is weakly manifested and convection of 
a compressible gas medium can be considered 
within the Boussinesq approximation as an 
incompressible fluid flow. However, when the 
height of the region exceeds the critical value (17.3 
cm for air under normal conditions), a relatively 
large pressure variation causes a significant change 
in density, which greatly changes the characteristics 
of convective processes [3,5]. For example, the 
possibility of developing adiabatic processes makes 
it possible for convective instability to develop even 
with a stable density stratification of the medium 
[2].  

The features of convection in a compressible 
medium have been discussed in a number of 
monographs and discussions [6-10]. It is 
traditionally considered that gas compressibility 
under convection at laboratory scales is 
insignificant, and it is essential only at large 
(planetary) scales. In this case, both scales 
(laboratory and planetary) are considered as 
asymptotic and their intersection is not taken into 
account. 

In [8], the planetary atmosphere is treated as a 
compressible medium in which the flow is assumed 
to be adiabatic. It is shown that convective flow in 
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the atmosphere is stable in the absence of a vertical 
temperature gradient. 

In [11], gas convection in a horizontal layer with 
horizontal boundaries free of tangential stresses is 
considered analytically in the linear approximation 
and numerically in the nonlinear approximation. It is 
argued that the static solution is stable in the 
absence of a vertical temperature gradient and 
becomes unstable with sufficiently strong heating 
from below. 

The results of the present work convincingly 
show that at a sufficiently large height of the layer 
of compressible gas located in the gravity field, 
instability of the static regime develops. However, 
the amplitudes of the disturbances of the static 
solution are very small and this circumstance 
explains why these flows have not been studied 
earlier. 

To illustrate the importance of studying such 
flows, we point out their significance for the issue of 
explosion safety when storing hydrocarbons in large 
tanks, for example, at automobile filling stations. 

An explosive situation occurs when the tank is 
almost empty, but some small amount of 
hydrocarbon remains at the bottom of the tank. In 
the presence of any flow, the fuel (vapors of 
vaporized hydrocarbon) mixes with the oxidizer 
(air), forming a potentially explosive gas-vapor 
medium. The key point here is the question of the 
presence or absence of movement (mixing) of the 
medium, and its intensity does not play a special 
role in this context. The formation of an explosive 
mixture has been studied in many studies [12-15].  

In this paper, the stability of the equilibrium of a 
compressible gas placed in a limited region in a 
gravity field is investigated. All boundaries of the 
region are assumed to be rigid with a no-slip 
condition for velocity and isothermal. First, the 
stability of the static equilibrium of a layer of 
compressible gas is analyzed in the linear 
approximation. The obtained data are supplemented 
by the results of solving a system of complete 
nonlinear equations describing the flows of 
compressible gas. The characteristics of the 
emerging nonstationary regime are discussed. 

 
 

2 Numerical Model and Problem 

Statement 
The convective flow of a compressible, viscous and 
heat-conducting gas in a gravity field can be 
described by the following system of equations 
[1,16]: 

 

 
Here u, v, P, ρ and T are dimensionless 

components of velocity, pressure, density and 
temperature, M = ν/((γT0R)0.5H) = 4.608 ∙ 10−8∙H−1 is 
the Mach number, where the velocity calculated 
from kinematic viscosity is related to the adiabatic 
speed of sound, T0 = 300˚K is taken as the 
characteristic value for temperature, the selected 
values of specific gas constant R = 287 J/(kg∙K), 
adiabatic index γ = 1. 4, kinematic viscosity ν = 16 ∙ 
10−6 m2/s and Prandtl number Pr = ν/χ = 0.71 
correspond to air, where χ denotes the gas 
diffusivity and CF = gH/(γRT0) = 8.130 ∙ 10−5∙H is 
the hydrostatic compressibility and g is standard 
acceleration of free fall. As the length scale we 
chose the height of the region H, for temperature 
and density - their values T0 and ρ0 at the lower 
horizontal boundary, for the velocity - adiabatic 
speed of sound (γRT0)0.5, for the pressure - Rρ0T0 and 
time - H/(γRT0)0.5. The dependence of viscosity and 
thermal conductivity coefficients on temperature is 
neglected in the calculations. The height of the flow 
region in the calculations varies from 0.003 m to 0.5 
m. 

The equation for temperature (the fourth 
equation of system (1)) in the case of a region of 
low altitude asymptotically transforms into the 
equation for temperature in an incompressible 
medium in the Boussinesq approximation [1]. 

Figure 1 shows the formulation of the problem in 
dimensionless form. The horizontal size of the 
region, referred to the vertical, is equal to π in all 
simulations. All vertical and horizontal boundaries 
of the region are considered rigid with the no-slip 
condition for velocity and isothermal. 

This problem has a static solution: 

 
The relationships for density are derived from 

the system of equations (1) taking into account the 
absence of motion, the smallness of the value of CF, 
and the equality of the dimensionless value of 
density to 1 at the lower horizontal boundary. 

The calculations were performed using the 
explicit scheme in time, and since the appearance of 
shock waves in the solution was not expected, a 
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non-divergent formulation of the system of 
equations was used. The convective nonlinear and 
diffusion terms were approximated by the 
monotonic scheme of A.A. Samarskii [4], and thus 
the numerical method used was of the first order of 
approximation in time and the second order in 
space. 

 

 
Fig. 1. Formulation of the problem. 

 
All calculations were performed on a grid of 

(241∙81) nodes with a dimensionless time step of 
0.01. Test calculations on more detailed space and 
time grids showed sufficient accuracy and stability 
of the algorithm used. 

All calculations were carried out near the 
stability threshold with the Reynolds number value 
as follows: 

 
1Re 2 / ,Ek M    

 
which did not exceed values of the order of 10-2. 
Here Ek denotes the total kinetic energy of the 
entire moving mass of gas [2].  

Due to the low velocity of flows, the main 
contribution to the pressure variation is made by its 
hydrostatic component [3]. 

Note, that the height of the region for clarity is 
always a dimensional value. 
 
 
3 Linear Stability Analysis of a Static 

Solution  
For infinitely small perturbations of the static 
solution from system (1) we can obtain (for 
simplicity of presentation we use the same 
notations) system (2), which is given below.  

We will consider the solutions of system (2) in 
the form that is usually used in studying the stability 
of convective flows [1]: 

 
 
 

 
 

When deriving system (2), the hydrostatic 
compressibility CF were considered small compared 
to 1. 

Here λ, u0, v0, ρ0 and T0 are complex constants, α 
and β are real constants and the amplitudes of the 
disturbances increase for real part λr < 0 and decay 
for λr > 0. In this section, the solution is considered 
to be periodic in the horizontal and vertical 
directions with wave numbers α and β. This 
formulation of the problem is physically close to the 
formulation of the problem of flow in a region with 
free horizontal boundaries [11]. 

From system (2) we can obtain a system of 
equations for the amplitudes: 
 

 

3.1 Development of disturbances in the 

absence of gravity  
Let us consider the solutions of the systems of 
equations (2) and (3) in a special case, in the 
absence of gravity CF = 0. Then, instead of (3), we 
obtain a simpler system of equations: 

 
System (4) was written in matrix form and from the 
condition that the determinant of the system is equal 
to zero, an algebraic equation of the fourth order 
was derived to determine λ: 
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Despite some cumbersomeness, the resulting 
equation has four solutions, which are written out 
analytically and divided into two groups: 

It can be found that the first two roots correspond 
to a two-parameter family of solutions that are 
monotonically damped under the action of viscosity, 
where C1 and C2 are two arbitrary constants: 
 
 
 

This solution describes the flow of a viscous 
incompressible fluid, since the continuity equation 
αu+βv = 0 (ux + vy = 0) is satisfied exactly here. 

In this part, the situation is similar to that 
observed during convection of an incompressible 
fluid in the Boussinesq approximation. The obtained 
solutions determine the convective mode, since they 
are the ones that, in the presence of a vertical 
temperature gradient and gravity, lead to the 
development of convective motion in an 
incompressible fluid in the Boussinesq 
approximation. Note that in a compressible medium, 
the calculated neutral curve also corresponds to the 
convective mode [2,3,5]. 

However, the second group of solutions (roots 
λ3,4) corresponds to motions of a more complex 
structure. 

To avoid cumbersome calculations, we will limit 
ourselves to a numerical example, calculating the 
solution with the choice of specific values of the 
parameters α = 3, β = π, H = 0.5 and γ = 1.4. 

Carrying out obvious simplifications associated 
with discarding small terms, we obtain: 

 The solution written out defines a rapidly 
oscillating motion of a compressed gas, since the 
continuity equation αu + βv = 0 (ux + vy = 0) is not 
satisfied here. This solution defines a 
thermoacoustic mode, since it corresponds to 
thermoacoustic waves, which are analogs of 
pressure waves.  

As methodical considerations have shown, the 
oscillation frequency of the thermoacoustic mode is 
determined by the imaginary part of the roots λ3,4 
and is determined only by the Poisson adiabatic 
index and the wave number S0.5 = (α2 + β2)0.5. 
Dependence on other parameters, such as the height 
of the region, the presence or absence of gravity or 
heating, is practically absent here.  

It can be shown that the propagation speed of the 
thermoacoustic wave is equal to the adiabatic speed 

of sound. Or, in other words, the characteristic time 
scale of the thermoacoustic mode is equal to 1. 

 
 

3.2 Linear Analysis with Gravity 
Now let us consider the development of linear 
disturbances taking into account the gravity force  
CF > 0. Similar to the procedure described above, a 
system of equations for the amplitudes is derived 
from system (3), the resulting system is rewritten in 
matrix form, and from the equality of the system 
determinant to zero, we obtain an equation for the 
increment λ. The resulting fourth-order algebraic 
equation for λ is solved numerically. 

Test calculations have shown that the solutions 
corresponding to the convective mode in the 
absence of heating are always damped, however, 
what is very interesting and unusual, the solutions 
corresponding to the thermoacoustic mode can 
become increasing at a sufficiently large height of 
the region. 

Fig. 2 shows the real part of the increment of the 
solution corresponding to the thermoacoustic mode 
λ3r at H = 0.5 m and β = π as a function of α. It is 
evident that in the range of wave numbers  
0 ≤ α < 8.6 the solution corresponding to the 
thermoacoustic mode increases in time. The fastest 
growth of the solution is observed at α = 0. 

 

 
Fig. 2. Real part of the thermoacoustic mode 

growth rate as a function of α. 
 
Figure 3 shows the real part of the solution 

growth rate corresponding to the thermoacoustic 
mode λ3r at α = 0 and β = π as a function of H. It can 
be seen that the thermoacoustic mode becomes 
increasing at a region height greater than 0.1 m. 
 

 

4  Results of Numerical Simulation 
Now let us consider the results of numerical 
modeling using the complete nonlinear system of 
equations (1). 

Fig. 4 shows the velocity field at H = 0.5 m, the 
two-vortex flow structure is clearly visible. Gas 
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particles descend along the vertical boundaries, 
where the density is highest, and rise in the center of 
the region, where the density of the medium is 
lowest. 

 

 
 

Fig. 3. Real part of the thermoacoustic mode 
growth rate as a function of H at α = 0. 

 
 

 
 

Fig. 4. Velocity field. 
 
A small speed of movement (about 0.1 μm/s) 

corresponds to the Reynolds number shown in Fig. 
5 as a function of the height of the region H. The 
signs in Fig. 5 show the results of numerical 
calculations. 

 

 
Fig. 5. Reynolds number. 

 
Figure 6 shows the dimensionless temperature 

profile at H = 0.5 m, obtained by averaging the 
temperature field along the horizontal coordinate x. 
The shape of the temperature profile reflects the fact 
that heating is observed inside the region, with a 
maximum temperature of about 0.26 μK. 

 

Fig. 6. Temperature profile. 
 
We emphasize that inside the region the gas 

density decreases according to the relationship 
between the density  and  temperature deviations  
Δρ = -ΔT [2], which follows from the equation of 
state. The density profile, taken with a minus sign, 
coincides with graphical accuracy with the 
temperature profile in Fig. 6. 

In Fig. 7 the total kinetic energy Ek calculated 
over the entire region is shown as a function of time. 
The given dependence is large-scale, no periodicity 
is observed. The characteristic time scale of this 
large-scale motion is five orders of magnitude larger 
than the time scale of the thermoacoustic mode.  

In Fig. 8 the energy spectrum of the dependence 
of Ek on time is shown. It is evident that the large-
scale simplicity of the dependence of the kinetic 
energy on time is deceptive, since the given 
spectrum is complex and similar to turbulent. The 
power law -5/3 shown in Fig. 8 was observed with 
varying degrees of accuracy in all calculations at  
H > 0.2m. 

 

 
 

Fig. 7. Kinetic energy as a function of time. 
 
 

5  Discussion 
As linear analysis shows, the equilibrium state of a 
compressible gas layer in a gravity field is stable at 
a region height of less than 0.1 m. However, 
calculations performed using a complete nonlinear 
system of equations show that non-stationary 
regimes are also observed at a lower region height. 
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It is possible that this is due to the limited 
applicability of the performed linearization of the 
original system of equations at a low height of the 
region. But, the final answer to the question about 
the stability boundary of the static solution requires 
additional research. 
 

 
 

Fig. 8. Kinetic energy spectrum. 
 

The linear stability analysis of the static solution 
shows that the rapidly oscillating thermoacoustic 
mode becomes unstable. However, the resulting 
flow is large-scale and its characteristic scale is at 
least five orders of magnitude larger than the 
characteristic time scale of the thermoacoustic 
mode. The time dependence of the kinetic energy is 
also large-scale, but this simplicity is deceptive. In 
fact, the kinetic energy spectrum is complex and 
resembles a turbulent one. At a sufficiently high 
altitude of the region, the energy spectrum of the 
time dependence of the kinetic energy corresponds 
to a power law of -5/3 with greater or lesser 
accuracy, the cause of which, as well as the energy 
processes of the formation of a large-scale flow 
from a small-scale (in time) require additional 
research. 

In order to partially reduce the influence of small 
solution amplitudes on the accuracy of the obtained 
solution, it seems important in the long term to 
perform a similar series of calculations for the full 
nonlinear system of equations, but written in 
deviations from the static solution. It is possible that 
such an approach will be more effective in 
calculations with a small height of the region, where 
extremely small amplitudes of deviations from the 
static solution are observed. 

 
 

6  Conclusions 
In this paper, we study the stability of the 
equilibrium of a compressible gas placed in a 

limited region in a gravity field. All boundaries of 
the region are considered rigid and isothermal. 

The constancy of temperature at all boundaries 
and the absence of unstable density stratification 
determine the absence of solutions corresponding to 
the convective mode. However, the results of the 
linear analysis show that when the height of the 
region is greater than 0.1 m, solutions corresponding 
to the rapidly oscillating thermoacoustic mode 
become increasing. 

The development of instability of solutions 
corresponding to the thermoacoustic mode leads to 
the formation of a large-scale flow, with a 
characteristic time scale five orders of magnitude 
greater than the initial thermoacoustic one. 

A study of the time dependence of the kinetic 
energy of the flow shows that the large-scale 
simplicity of the forming flow is deceptive. In fact, 
the spectrum of kinetic energy is complex and 
resembles turbulent. 

The results obtained show that, contrary to the 
standard idea that the compressibility of a gaseous 
medium manifests itself only when moving in it at 
speeds of the order of sound or at a large height of 
the gas layer in a gravity field [7], the 
compressibility of a gaseous medium can play a 
significant role even when considering disturbances 
of an equilibrium static solution of infinitely small 
amplitude with zero gravity. 

Let us present considerations explaining the 
development of instability of a compressible gas 
layer in a gravity field.  

The greatest pressure in a gas layer is always 
observed at the lower horizontal boundary. The gas 
particles there are compressed and, accordingly, 
have the greatest potential energy.  

The state of the system with the greatest potential 
energy is unstable, therefore the particle rises 
upward with a partial transition of potential energy 
into the kinetic energy of internal waves and into the 
internal energy of the gas with an increase in 
temperature. 
It should be noted that there are technical devices 
that use physical principles close to those described 
in this paper [17]. We are talking about the 
perpetually running clock of J. Cox, which showed 
the time from 1774 to 1961 and was never wound 
manually. The role of the engine in it was performed 
by a mercury barometer, in which mercury, under 
the action of atmospheric pressure, rose from a glass 
container at the bottom of the clock up a glass tube. 
At the same time, the spring located inside the clock 
was compressed, storing energy for the operation of 
the clock. The driving force here is the daily 
pressure difference. Whereas in the present work, 
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the driving force is the dependence of hydrostatic 
pressure on altitude, which, in the presence of 
compressibility of the medium, leads to the 
development of instability. 
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