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Abstract:-The study examines a closed-form analytical solution for the plane strain problem concerning the static
deformation of a homogeneous, isotropic, elastic (HIE) layer of uniform thickness lying over a rough-rigid base
(RRB). This deformation is induced by a dip-slip fault at 45° with opening in the horizontal direction embedded
within the elastic layer. The Airy stress function approach is employed to derive the displacement and stress
(DAS) fields in the integral form by applying appropriate boundary conditions at the free surface. To analytically
evaluate these integrals, the denominator term is approximated by a finite sum of exponential (FSE) terms using
the method of least squares. The integral expressions for the displacements are evaluated analytically and the
stresses can be derived in similar manner. This study provides insights into the role of fault geometry in crustal
deformation and enhances the modeling of seismic hazard in tectonically active regions.
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1 Introduction caused by an arbitrary multipolar source in a layered
The deformation of the Earth’s crust due to faulting half-space. In contrast, Ben-Menahem and Gillon [2]
is a significant concern in seismology and tectonics. demonstrated the pronounced effect of low rigidity
Most earthquake foci occur within the Earth’s crust, crustal layers on the displacement field. The
where seismic waves originate from the focus and postseismic displacement and strains  for a
propagate throughout the Earth’s interior. The crustal rec'gangular dip-slip fault W_lthln a three layer medium
deformation is affected not only by the faulting derived by Ma and Kusznir [3]. Singh and Garg [4]
processes but also by the complex internal developed integral expressions for the Airy stress
boundaries of the Earth. Understanding these function for two-dimensional sources in an
deformation patterns is essential for hazard unbounded medium, while Singh et al. [5] examined
assessment and tectonic modeling. While past studies the plane strain deformation of a layered half-space
often focus on elastic or viscoelastic half-space due to a very long dip-slip fault within the upper layer
models, the influence of fault orientation within by using FSE terms. Savage [6] computed the
layered media remains insufficiently unexplored. In displacement field resulting from an edge dislocation
this paper, we attempt to study crustal deformation in Earth_ model comprising an elastl_c Iayerwelded to
resulting from two dimensional faulting. We examine an elastic half-space. Extending their prior study [3],
the crustal deformation due to faulting using a Singh et al. [7] calculated the postseismic
simplest model, considering a HIE layer of finite deformation in a layered half-space driven by a very
width resting over a RRB induced by a 45° inclined long dip-slip fault. Nespoli et al. [8] explored the
dip-slip fault. Such fault configurations are typical in crack growth model in an elastic medium consisting
tectonically active regions. The findings may of two weldgd half-s-paces with various r|g|d|F|es.
contribute to earthquake modeling, seismic hazards Rani and Rani [9] derived the analytical expressions
assessment and a deeper understanding of tectonics. for the displacements due to dip-slip faulting for a

Most studies assumed the Earth’s crust as an HIE layer situated on a RRB. Additionally, several
elastic layer overlying an elastic or viscoelastic half- researchers  [10-18] ~ have investigated the
space, focusing on the deformation due to various deformation in Earth models comprising a layer of
source dislocations. Ben-Menahem and Singh [1] f|r_1|te thlc_:kness over a half-space, focusing on strike-
obtained a solution for the static deformation field slip faulting.
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In the present paper, the deformation for a
two-dimensional plane strain model for a HIE layer
resting on a RRB resulting from a 45° inclined dip-
slip fault within a layer has been studied. The integral
expressions for the DAS have been obtained using
Airy stress function approach by applying the
suitable boundary conditions at the free surface. To
evaluate the integrals analytically, the complicated
expression of denominator has been approximated as
a finite sum of exponential terms [22] using Least
square approximation [23] in such a way that the
error is minimized. Then the integrals are evaluated
analytically for the DAS can be derived similarly.
This study provides insights into the role of fault
geometry in crustal deformation and enhances the
modeling of seismic hazard in tectonically active
regions. Earthquakes due to dip-slip fault at 45° are
generally observed in tectonically regions and the 45°
dip-slip motion in these regions plays a crucial role
in the release of tectonic stress, often triggering the
seismic events.

2 Problem Formulation
We consider a two-dimensional approximation
wherein the displacement components (u,,u,,u,) are

independent of a single co-ordinate x, saya/ox=0.
This simplification allows the decoupling of the
plane strain and anti-plane strain problems. Under
this assumption, the plane strain problem (u, =0)and

the anti-plane strain problem get decoupled, and can
be addressed separately. Here, we discuss the plane
strain case only. An elastically isotropic medium is
characterized by two elastic constants, namely, shear
modulus (x)and Poisson’s ratio (v).

Let us define a Cartesian co-ordinate system
(x,y,z) with z-axis vertically downwards. The model

consists of a HIE layer of finite width H occupying
the region—o <y <o, 0<z<H, lying over a RRB.

The layer is in contact with a RRB at z=H . A dip-

slip fault inclined at 45° to the horizontal is embedded
within this layer at depth z =h and extends infinitely

along y-direction, producing the deformation
throughout the layer (Fig. 1).

The plane strain problem for an elastic
isotropic medium can be solved in terms of the Airy
stress function U such that [19]

o’V o’V o’V

Oy =—>5,0,=— , O,y = 1
Yy aZZ Yy ayaz ayZ ( )
satisfies
VVAU =0 2
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where g (i, j=y,z)are the stress components. The

displacements components are obtained on
integrating the constitutive equations:
2pu
ny = m[(l—‘/)ew +Vezz
2u
= e, +(1-v)e
= e, 0 ve. ] o

o, =2ue,,

where, &; (i, j =y, z) are the strain components. The
Airy stress function used to express the displacement

components. Here, the expressions for the
displacements in terms of Airy stress function are

given by

o 1 )
2 =——+—|VUd 4
o, == (VU dy 4)

ouU 1
2uu, =——+—|V? 5
4u, az+2aj U dz (5)
where

2 2
1 , & 9 (©)

o =m, \% —$+az—2.

The Airy stress function U, for a line source
passing through (0,0, h) parallel to the y-axis in an
unbounded, isotropic, elastic medium is of the form

[4]

< _az [SINKy Ydk
= € — 7
U, _([(Sl+52£kZ)e [Coskyj > (7
where,
Z=z-h,e=+1 (8)

the upper sign is for z >0 and the lower sign for
Z<0.The source coefficients S; and S, are

independent of k and are listed for various sources by
[20], as presented in Table 1 for dip-slip faulting at
45°, We refer the notations of [21] for labelling these
sources. The double couple (33) - (22) denotes the

double couple of strength D,, where forces bisect the
angles between the dipoles (22) and (33).

line source

l Elastic Stratum

Rough rigid base
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Fig.1. Geometry of a 45° inclined dip slip line
dislocation in a HIE layer of finite width H overlying
aRRBat z=H

Table 1

Source S, | S, Solution

Double couple |0 aD,, I & Lower

(33) - (22)

Double couple |0 eaD,, | Upper

(23) + (32)

Table 1. Source coefficients for inclined dip-slip fault
and vertical dip-slip fault.

Using Fourier transform to eq.(2) and
solving the resulting ordinary differential equation

for the elastic stratum (0< z < H ) consisting of a line

dislocation situated at the location (0,0, h) parallel to

x-axis, the solution of Eq. (2) is obtained as

U=U, JFI[(C1 +c,kz) e +(c; +ekz) e | (zlc:]sll(:; jdk
9)

where, c, ( =1,2,3,4) are unknowns. Using Egs. (1),

(9)-(5) and (9), we derive the integral expressions for
the DAS:

0

S,+5,(-2+¢ckz)]e sinky )
=]l )]

cos ky

st feverongor (2 o

(10)

o

o, = Tg[sl =S, (1-¢kz)]e (cos_ Ky ) kdk
! _

sinky

e+ a)e” e, e, -kay]e "} (T i
G

= [[s, +S,ekz]e (S'n y j kak
5 cos ky

Ot—3

cos ky
(12)
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1 1 . [ €os ky
2uu, =—|| S, +S,| ——+¢ekZ ||e™* dk
, ;{ [+ ﬂe [WJ

_Iﬂq ‘c, [kz + iﬂekz + {cg ‘e, (kz - iﬂ}ek [fmkiy]k dk
(13)
2., _l [s s [—71+gkzﬂe (i':sgjdk

+T{{cl+cz(kz—;+lﬂe“ +|:C3 +c{kz+£—lﬂe’”}(izg ]kdk

(14)
Equations (10)-(14) give the integral form solution
for a finite layer due a two dimensional faulting.

Assuming that the upper surface of the
elastic layer is traction-free. The boundary conditions
are
c,=0,=0 (15)

at z=0. Additionally, the lower surface z=H rests
on a RRB, hence

u,=0,u, =0 (16)

for z=H . Using Egs. (15)-(16), a system of four
equations in four unknowns is obtained in

C (i =], 2,3,4) and on solving by Cramer’s rule, the

values of unknowns are obtained as:

L[S* e 5o+ (4KPH + 2KH +6% )¢ ™

C =
' Dk

_S2
48, k"{ knoe " + [4k3th—2k2H(H )+ kho? + 2 ]e““}

+8,e" {56 — (2kH +1)e ™|

2
5, | khoe " + 2k H(h—H)+Kkh+ 25 jeZk”H

c,= ik[ S e (—4kHe’ZKH )+S, e " {6e’““ —(4K*Hh - 2kH +1)e " }
+28,"e" {~ge ™ 1 |+ 8,7 {(2kh +1) 5o + {2k (H —h) -1} e " }]

c, = ﬁ[sge’k“ {(1-2kH)e ™ -5}

1-5°
+S,7e™ {[ZK H(H —h)+kh—T]e’2kH —khﬁ}
+8,°" {~0e " + (2kH +1)e |

_ 2
5,0 {kh&e“k” +[2sz (H-h)—kn-1 25 ]e*ﬂ” H

—[287e (e —5)+8, e {(2k(h—H)-1)e ™ +5(1-2kh)}

1
C

“~ Dk
8,6 (4kH e ™ +8,"e" {~ge !+ (4kH (H —h) - 2kH +67)e "} |
(17)
where
D= 5[1+(A+ Bk2H?)e ™ 4o ]
A=—(§+£j, B=_2 s—ay_3-1-2 (18)
o o a
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On substituting the values of unknowns in Egs. (10)-
(14), the integral forms for the DAS are obtained.

3 Problem Solution

From Table 1, the source coefficients for a dip-slip
fault inclined at 45° with opening in the y—direction
are specified by double couple (33)-(22):

S es abds
=0,8,=S,=S; = P (29)

where b denotes the slip magnitude and ds represents
the width of the line dislocation. By substituting these
source coefficients from Eq. (19) into the integral
form of DAS, a solution for the dip-slip fault at 45°

in an elastic isotropic layer(0<z<H) is obtained.
The displacements are expressed as follows:
_ abds M z -4 f’) &% sinky dk

T 1%

S, =S =S’ Ds _

+;}[Hc +C (kz+—1_25j}e'“ (20)
+{c3'+c [kz——5j}e “:l sinky dk}
2 D
u, = abds D‘(kz +& (3_5)j e ** cosky dk
2 |y 2
1+6
k kz
+= j{ c/+cC ( 2+ j}e (1)

+{cg+c (kz—ﬁj}e kz:l cosky dk}
2 D

where, the coefficients c¢/(i=1,2,3,4) are given
below:

o =& [ —khde ™ +{4k*H*h — 2k*H (H —h) + 5°kh
1—52 —2kH kh —4kH 2
- e +e [—khée +{2k H(h-H)

1-6° o 2kH
2

c; =€ {se " —(4k?Hh—2kH +1)e ™}

+kh +

e [(1+ 2kh)se " 4 {2k(H —h) _1} p2kH ]
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_ 2
¢ =g HZkZH(H _hy+kh-122 25 } o2 kh5}

-5’ o 2
2

=™ [ (1-2kh)5 +{2k(h—H)-1}e™" |

{kh5e4‘k“ 2k H(H —h)—kh—1

+ek“[ ~0e M 4 {MCPH (H —h) - 2kH + 6”& ™" |

(22)
To analytically solve the integrals in Egs. (20)-(21),
the denominator expression 1/D is replaced with
FSE terms to reduce error. Following [22], it is
expanded as a sum of exponential terms using
binomial expansion and truncated to the second order
of kH [23]:

%u 1-(A+BK?H?)e™ [ C+ A(KH)" e (23)

where, C is a constant independent ofkH ; 3,7 and
n are determined using least square approximation.
To find C, we use the asymptotic approximation
taking the limitas kH — 0, resulting in
Co A2+A—1_§2+1_ 1
2+A  1-6 S8(5-1)°

To determine the best-fitted values of £, and n
depending upon kH,v in equation (23) to minimize
error, we apply the least square approximation as
described by Scarborough [23]. We assume n =2 as
suggested by Ben-Menahem and Gillon [2] for rapid
convergence and assume v =0.23 for continental
layer and v =0.3 for oceanic layer. The best-fitted
values of £,y are obtained as Rani and Rani [9]:

S =1.1757,y =2.6025 for v=0.23

and B=2.9247,y=3.2453 for v=0.3 (25)
From Egs. (23)-(25), 1/D is approximated with best
fitted values of £,y . Using this expression of 1/D

in Egs. (20)-(21), the displacements can be expressed
as a linear combination of integrals, which are
evaluated by using the standard integrals (Gradshteyn
and Ryzhik [24]).The analytical expressions for the
displacements are obtained using the method of least
squares such as:

(24)
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B abds{&(é—l)y _20y(z —h)? _26y(z—hs)(z +h)

Y275 | 2R? R s?
4hzys ( 4(z +h)? Sy(1-9)
- S4 [ SZ _1 - 282 +|¢1|n:2 +|¢2|n:4

_A{|¢1|n:4 +[¢2], +|¢3|n:2} —BH’ {|¢4|n:6 +[@sl,, + |¢6|n:2}

+C {|¢1|n:2+y + |¢2|n:4+y + |¢3|n:y}

Ao, + ol + 1
(26)
_abds{é(z—h)(Z(z—h)z _1) 5(3-5)(z-h)

25| R R? 2R?
+5(z+h6){2(z+h)2 _lj_4h25(z+h)[4(z+h)2 _3J

s? s? st s?

_5(1+5)(z+h)
28?

_A{lyllln:4 +|l// 2|n:6 +|l//3|n:2} ~BH* {|W4|n:e +|‘//5|n:4 +|W6|n:2}

+Hal,, + vl

+C {ll/llln:2+y + |l// 2|n:4+;/ + |l//3|n:y}

+ﬁH ’ {l‘//4|n=4+;/ +|l//5|n=2+y +|l//5|n=y}:|
(27)
where,
R*=y?+(z-h)?,S*=y*+(z+h)?
and ¢, w;(i=12,...6) are given in Appendix.

On taking the limit as H —oo, the displacements
coincide with the corresponding results for a vertical
tensile fault given by Rani et al [25], confirming the
validity of the model.

4 Conclusion

The elastic residual field due to a dip-slip fault at 45°
with horizontal opening buried in a layer of finite
thickness overlying a RRB is obtained. The linear
combination of exponential terms occurring in the
integral expressions of the deformation field is
approximated by a FSE terms using the method of
least squares. Then the integrals have been evaluated
for the displacement field analytically. The stresses
can be computed similarly.

Appendix
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qn

+4y(z—H)(H -h)

+2y(hs+H (1—5)—2){

LoY(a-8)[1 1

2 |v? w?

P, G | 0¥(1-d)J1 1 1
¢, =26y(z- h){Tn —W}+T ?+W+
4r,

46hzy — +206 oh
" Zyvn [Vn J y(Z )Vn

_26y(z-hs)s, 4shzy(4 5y (1-9)
WS w,* w g

4, =245y (z- h{ [an

4p,’°
4{ Tz _lj+

+5y(1—5){_|_

16r,*

12

2
rn

. 485hzy(

V6

+24§y(z—5h)\%[—
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V4
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Y= Wn 2

n

4, =960Hhy (H )Tp[
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16pn
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2

{
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