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Abstract: - Methodology of derivation and analysis of the Maxwell equations in total derivatives by time is 
considered. In continuation of the earlier published paper, this paper is devoted to the methodology of 
derivation of the Maxwell equations for the electromagnetic field - with total time derivatives - in contrast to 
the partial derivatives in the "classical" Maxwell equations. Analysis of the electromagnetic wave spreading is 
performed in detail and the parameters of the waves are derived and analyzed. It is shown that the modified 
Maxwell equations contain a description of the Doppler Effect, which takes place when the waves of any nature 
(not only electromagnetic) propagate in a homogeneous and isotropic continuous medium. Also some novel 
teaching methodologies are mentioned, where these ideas may be spread for the students to learn the Maxwell 
equations and to train in their analysis and comprehend the wave spreading phenomena.  
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1 Introduction 
The presented paper has been prepared in 
continuation of the [1], with the research and 
educational purposes. The equation of spherical 
wave was obtained from the wave equation, which 
is derived from the Maxwell equations as shown 
below: 
 

0. 
 

Dividing this equation by 0, we get: 
 

1. 

 
This is equation of the sphere of unit radius in 

the velocity space (square of the phase speed of the 
wave is equal to unity). The Akimov’s formula [2], 
for the speed of wave, the source of which is 
moving with a speed  is as follows: 
 

                         1.                    (1) 

 
Then from (1) yields: 
 

2
∙

1, 

or  
 2 ∙ , 
 

 2 ∙ ∙ , 
 

 ∙ 0. 
 

From the last equation, the solution is as follows: 
 

 ∙ , 
 

 ∙ ∙ ∙ √1 ∙ , 
 

 ∙ √1 ∙ , 

 
where are:  – the angle between the vectors  and 

,  – the amplitude of phase speed of the wave. In 

this form, the last formula was given in [2]. 
In the right hand of (1) the unity is put just for 

simplicity. Actually, it is the following equation 
with the right part the speed of light: 
 

                 .      (2) 

Yevgen V. Chesnokov, Ivan V. Kazachkov
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 14 Volume 3, 2018



 
In fact, the equation (2) is the law of cosines for the 
difference of the vectors. 

If the receiver is moving too, with a speed 	, 
then according to the rule of vectors’ adding yields: 
 

. 

 
Plus is chosen because if  (the receiver and 
transmitter move in the same direction), then the 
Doppler Effect is absent. 
 
 

2 Modification of Maxwell Equations 
Now the Maxwell equation array (see Appendix) is 
considered to reveal, which modification is needed 
to obtain of it the Akimov’s formula [2] (the speed 
of light is put 1 just for simplicity) as in (1). 
 
 
2.1 The Linear Equation Array for the 
Modified Maxwell Equations 
In case of linear differential equations with constant 
coefficients, it is easier to work with the equivalent 
their algebraic equations for the Fourier amplitudes. 
Thus, the linear equation array corresponding to the 
Maxwell equations in their modified, more general 
form (see Appendix) is as follows: 
 
s ,  , 
 
 ,       
       
 ,                (3) 
 
 s , 
 
 , 
 
where: ∙ . The determinant of this 
system is: ∙ ∙ ∙ ∙ , so 
that there are two longitudinal (plane) waves and 
four «spherical» transversal waves. 

Then the coefficients  and  are selected such 
ones, which allow getting the expression 
 

 ∙  
 

from ∙ ∙ . Two cases are 
available for this: 
 

, , (a) 
  

Or 
 

,  .  (b)  
The choice (а) yields: 

 
∙ ∙ ∙
∙ ∙

.	
 
The choice (b) yields: 
 

∙ ∙
∙

∙  
∙ ∙

∙ . 
 
Here the vector  is constant.  
 
 
2.2 The Fourier Transform of the Equations 
Having a Fourier transform of the system of 
equations, one can restore its coordinate 
representation, and two options are possible: 
 

 0,  

                          (a) 

 0. 

 
or 

 0 ,   

                            (b) 

 0. 

 
Here the conventional form of the total derivative by 
time was used: 
 

≡ ∙ . 

 
 

3 Solution of the Equations 
 
 
3.1 The System in Case (b) 
 
3.1.1 Transformation of the Equations 
For the analysis of the equation array (b), the 
substitution is implemented, which turns the first 
equation into an identity: 
 

, . 
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The second equation of the system is transformed as  
 

1

∙ , 
 

1 ∙

∙ ∙ , 

 

∙

, 
 
where: ≡ 1 ∙ . 
 
3.1.2 the Lorentz’s Calibration 

The analogy of the Lorentz’s calibration gives  
 

 ∙ 0, 

 
while the second equation results in 
 

 . 

 
The equation 
 

∙  
 
transforms into 
 

∙ ∙ . 

 
With the Lorentz’s calibration follows  
 

∙ , 

 

. 

 
 
3.2 Parameters of the Spreading 
Electromagnetic Waves 
 
3.2.1 The phase speeds of the waves 
The scalar  and vector  potentials, in this 
mathematical model considered, satisfy the 
modified wave equation: 
  

.          (4) 

 

The waves described by the equation (4) have 
different phase speeds for their spreading (along the 
vector  and perpendicular to it): 

∙ 0, (5) 
 
where from 
 

 ∙ , 
 
 ∙ √1 ∙ . 

 
One could see analogy in (5) with a spreading of 

the waves in anisotropic medium, e.g. in the single-
axis crystal.  

In the anisotropic medium the group speed ≡

 does not coincide with the phase speed ≡  . 

The phase speed is the speed of the moving wave 
front (surface of constant phase), while the group 
speed is a characteristic of the energy transfer by the 
wave packet.  
 
 
3.2.2 Choosing the Coordinate System 

The vector of the group speed is  
 

∙
.           (6) 

 
Let us choose the coordinate system so that the 
vector  would be directed by the axis z: 
0,0, . Then from (6) follows 

 

∙ 1 , 

 

						 ,           (7) 

 

, 

      

. 

 
3.2.3 The Wave Fronts 
It is easily proved with (7) that  
 

              .    (8) 

          
The equation (8) represents the equation of: 
- One-axis ellipsoid by 1; 
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- Single-cavity hyperboloid by 1. 
The case 1 is degenerate (plane wave). 
 
 
3.3 The Fresnel Equation 
Rewriting the equation (5):  
 
 ∙  
 
through the conventional in the crystal optics vector 

 ([3], p. 307), and divide by 0: 
 
 1 ∙ .     (9) 
   
This equation (9) is called in optics the Fresnel 
equation and defines the surface of wave vectors - 
the optical indicatrix. It is written in the spherical 
coordinates as follows 
 

∙ ∙ ,  (10)   

 
where ,  are the amplitudes of the vectors ,  
respectively. 

The equation (10) describes the sphere with the 

radius , the center of which is shifted by  

along the vector . Thus, the vector  of relative 
motion determines the chosen direction as the 
optical axis of space. It defines the anisotropy of the 
space for the propagation of electromagnetic waves. 

The equation of the equal phases is as follows 
 

 1, 

 
the sphere with a center shifted by the vector .  

The group speed surface is 
 

 , 

 
the surface of stretched along  rotation ellipsoid.  
 
 

4 The Green Lagging Function 
 
 
4.1 The Equation with Right Hand 
Solution of the equation with right hand side 
 

    (11) 

 
can be presented as the integral of right hand side 

with the Green function: 
 

, , , , ,
, ∙ , , , ,	

 
where the Green function satisfies the equation (11): 
 

, , ,

, , , .	
 

Using the presentation of the functions through 
their Fourier integral yields: 
 

,
∙

∙ ∙
. 

 
 
4.2 Integral by Frequency 
The integral by frequency 
 

 ,
∙

∙ ∙
 

 
is computed using the series expansion of the 
denominator of fraction by the factors  
 

∙ ∙ ∙

,	

 
where are 
 

 ≡ ∙ 1 ∙ , 
 

 ≡ ∙ 1 ∙ . 
 

The integral 
 

,
∙

2
 

 
is calculated by the theorem on the residues of the 
analytic function, the closure of the integration 
contour in the lower half-plane by 0: 
 

,
∙

2 ∙

, 
 

,

∙

∙
·

∙ ∙

∙
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, 
 

,
∙

∙
· 1 ∙ ∙

, 
 
where 0	 0 |1	 0 . 
 
 
4.3 The Green Function 
The integral 
 

,
2

∙

1 ∙
· 

1 ∙ ∙  

 
is calculated by all space  in the special 
coordinate system with the vector 0,0, : 
 

,
2

1
· 

1 ∙ , 

 

,
1

1 2
· 

∙ , 

 
where are: 

√
, 

√
, . 

 
In the spherical coordinates: 

 

, ∙ ∙

∙ , 
 

, ∙ ∙ ∙

, 
 

where 

. 

 
The use of identities 
 

∙

, 

∙ , 
gives  

 

, ∙ . 

 
Here 

 0,  

 
therefore,  by 0 and can be 
omitted. Then  only for 0, 
therefore,  is not needed. Finally, 
  

           , .     (12) 

 
The Green function (12) can be presented also in 

the following form: 
 

,

, 

 

,

. 

 
Then, in the spherical coordinates 

x ∙ sinθ ∙ cosφ, y ∙ sinθ ∙ sinφ, z ∙ sθ, 
 

 ,
∙ ∙

. 

 
The condition of zero argument for the -function is 
the equation of cone of causality  
 

 1 ∙ ∙ sθ . 
 
Thus, 

                    
∙

.                (13) 

 
 
4.4 The Graphs of Speed for Spreading the 

Wave Fronts Depending on Angle 
The graphs of function (13) of the speed of 
spreading for the wave front against the latitudinal 
angle θ are given in Fig. 1 for 0.618 and Fig. 2 
for 1.618, respectively: 
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4.4.1 Ellipse 1  Dependence of Speed of 
Wave Front versus Latitudinal Angle   
 

 
Fig. 1 The ellipse 1  dependence (13) of the 
speed of spreading for the wave front against the 

latitudinal angle θ  
 
4.4.2 Hyperbole 1  dependence of Speed of 
Wave Front versus Latitudinal Angle   

 

 

Fig. 2 The hyperbole 1  dependence (13) of 
the speed of spreading for the wave front against the 

latitudinal angle θ 
 
 

5 Equations in the Canonical Form  
 
 
5.1 Reduction of Equations to Canonical 

Form 
 
5.1.1 The Maxwell Equations in Local System 
In the local system with the vector 0,0,  the 
Maxwell equations are the following: 
 

0, 0	, 
 

 0	,            

 

      
	

1 ,     (14) 

 

1 , 

 

1 , 

 
where: 

≡  . 

 
Transforming to the new independent variables: 

 
√1 ,			 √1 ,			 . 

 
yields (14) as follows  
 

√
0, 

 

                 
√

0	,        (15) 

 

√1 0	, 
       

 √1 , 

 

 √1 , 

 

 
√ √

. 

 
5.1.2 The Conventional Maxwell Equations 
Now introduce the new variables: 
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 ,																 ,									 , 
 ,																 ,									 , 

 √1 , 	
√

,
√

. 

 
In these assignments the equations (15) look like the 
conventional Maxwell equations  
 

0,  0	, 
 

                      0	,           

      

                  ,             (16) 

 

, 

 

. 

 
Thus, for each value of speed , the local 

transformation of the coordinates exists, which leads 
to the “canonical” form of the equations: 
 

0, 0, 

 
where all derivatives by time are total derivatives:  

 

≡ ∙ . 

 
When 1, the local transformation of the 

coordinates requires the multiplier √ 1 instead 
of √1 . 
 
 
5.2 Energy Conservation Law 
Normally in derivation of the law for conservation 
of energy-momentum the following is applied. The 
first Maxwell equation (see Appendix) is got in 
scalar product by vector , and the second one – by 
vector . The resulted equations are added. It yields 
 

    ∙ ∙ .             (17) 

 
Similar to (17), for the canonical form is got: 

 

        ∙ ∙ .          (18) 

 
 

6 Appendix 
 

 
6.1 The Maxwell Equations 
The Maxwell equations have the form: 
 

,   . 

 
In the Cartesian coordinate system is: 
 

 , 

 

 , 

 

 , 

 

 , 

 

 , 

 

 . 

 
The linear system of the partial differential 

equations with constant coefficients can be solved 
using the Fourier transformation: 
 

∙ ∙ , 
 

∙ ∙ , 
 

∙ ∙ . 
 

After substitution, omitting by exponential (non-
zero) results in the system of algebraic equations for 
the Fourier amplitudes of the fields  and : 

 
, 

 
, 

 
, 

 
, 

 
, 

 
. 

 
Now the system has «classic» view of the linear 

algebraic equations: ∙ , where are: 
, , , , , ,	 0,0,0, , ,  

And the determinant of the matrix  is: 
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 	 ∙ . 
6.2 Solution of the Equations 
Solution of the system is as follows: 
 

, , 
 

, , 
 

, , 
 
where are: 

, 

 
 ⁄ . 

 
The solution is written in the variables , ,  as  

 

, 	 , 

 
where  satisfies the wave equation: 
 

, 

 
and  satisfies the Lorentz condition: 
 

	 ∙ 0. 

 
Solution of the wave equation may be done using 

for example the Green lagging function. The 
Lorentz condition can be also reduced to the wave 
equation computing the divergence of the vector : 
 

	 ∙ ∙ 	 . 

 
Thus, for  we get also the wave equation: 
 

, 

 
Where  is the charge density satisfying the 
continuity equation 
 

∙ 0, 

 
which is assumed to be a known function. 
 
 

7 Conclusion 
Derivation of the Doppler Effect from the modified 
Maxwell equations with total derivatives by time 

was considered and analyzed in this paper. It was 
shown that the modified Maxwell equations contain 
a description of the Doppler Effect in the form of 
O.E. Akimov [2]. The Doppler Effect takes place 
when waves of any nature (not only 
electromagnetic) propagate in a homogeneous and 
isotropic continuous medium. The problem raised 
the new attention of scientists during the last time, 
e.g. [4]. 

Researchers in the field and the students 
including the application of the Computerized 
Educational Platform (CompEdu) [5-7] may use the 
presented materials by the spreading of the 
electromagnetic waves and analysis of the Maxwell 
equations. It can also be useful for studying the 
Doppler effect of electromagnetic wave 
propagation. 
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