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Abstract: The aim of this work is to explain the deuteron-deuteron reactions within palladium lattice by means of the coherence 
theory of nuclear and condensed matter. The coherence model of condensed matter affirms that within a deuteron-loaded 
palladium lattice there are three different plasmas: electrons, ions and deuterons plasma.  
Then, according to the loading percentage x=D/Pd, the deuterium ions can take place on the octahedrical sites or in the 
tetrahedral on the (1,0,0)-plane.  Further, the present work is concentrated on Palladium because, when subjected to 
thermodynamic stress, this metal has been seen to give results which are interesting from both the theoretical and experimental 
points of view. Moreover in Pd lattice we can correlate the deuterium loading with D-Pd system phases (i.e. �,� and �) by 
means of theory of Condensed Matter. Further, This paper seek to demonstrate that, at room temperature, the deformation of 
the crystalline lattice can influence the process of interaction of deuterons introduced within it. Calculations of this probability, 
in fact, showed an increase of at least 2-3 orders of magnitude with respect to the probability of fusion on the surface of the 
lattice. These phenomena open the way to the theoretical hypothesis of a kind of chain reaction, as a result of the deuterium 
loading and catalysed by micro-cracks formed in the structure by micro-explosions, can favour the process. In the second 
section we will discuss the problem of interaction of Deuteron-Plamon. 
 
Key words: condensed matter, Dislocations of the ions within the metal, Coherence Theory, low        
energy nuclear reactions (LENR)                  

 
 
I. Introduction 

 
The Coherence Theory of Condensed Matter is a 

general theoretical framework, which is widely accepted by 
most scientists working on cold fusion phenomena. 
According to this coherence theory of condensed matter [5], 
it is assumed that the electromagnetic (e.m.) field due to 
elementary constituents of matter (i.e. ions and electrons) 
plays a very important role on system dynamics. 
Considering a coupling between e.m. equations due to 
charged matter and the Scrödinger equation of field matter 
operator, it is indeed possible to demonstrate that in 
proximity of an e.m. frequency 0, the matter system 
features a coherent dynamics. Thus it is possible to define 
coherence domains, whose length is about CD =2/0. 
Obviously, the simplest model of matter with a coherence 
domain is a plasma system. In the common plasma theory, a 
plasma frequency p must be considered, as well as the 
Debye length measuring the Coulomb force extension, i.e. 
the coherence domain length. For a system with N charge Q 
of m mass within a V volume, the plasma frequency can be  

 
 
 
written as: 

  
 
 

V

N

m

Q
p                                 (1) 

In this present work, the “nuclear environment” has been 
studied, which supposedly exists within a D2-loaded 
palladium lattice at room temperature, as in accordance  
with the Coherence Theory. Traces of nuclear reactions 
have been observed in a palladium lattice when this is 
loaded with deuterium gas [1, 2, 3]. For this reason, Low 
Energy Reaction Nuclear (LERN) has been defined by 
many physicists. More robust experiments have shown that 
in the case of D2-loaded palladium the following nuclear 
reactions are more frequent [3, 4]: 
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MeVpHDD 03.43                    (1) 

MeVHeDD 85.234                        (2) 
 
 
In this present work, a ‘coherence’ model is also proposed, 
by means of which the occurrence of reactions 1 and 2 can 
be explained in accordance with more reliable experiments, 
as well as their probability. Firstly, an analysis of the 
environment has been carried out through the coherence 
theory of matter, i.e. of plasmas which are present within 
palladium (d-electrons, s-electrons, Pd-ions and D-ions); 
then, the potential reported in ref. [6, 7] has been 
considered, adding the role of lattice perturbations. Thus, a 
D-D tunneling probability has been computed. 
 
 
 
 
2. Plasmas within non loaded palladium 

 
According to the Coherence Theory of Condensed 

Matter, electron shells are in a coherent regime within a 
coherent domain in a Pd crystal at room temperature. 
Indeed, they oscillate in tune with a coherent e.m. field 
trapped in coherent domains. For this reason, plasmas of s-
electrons and d-electrons must be taken into account in 
order to describe the lattice environment. 

 
2.A. Plasmas of d-electrons 

 
They are formed by electrons of palladium d-shell. 

Computing: 

V

Nn

m

e d
d                                 (3) 

d-electrons plasma frequency is obtained. But according to 
the coherence theory of matter, this plasma frequency must 
be adjusted of a factor 1.38. This correction can be easily 
understood by observing that formula (3) is obtained 
assuming a uniform d-electrons charge distribution. But of 
course the d-electron plasma is localized in a shell of R 
radius (that is about 1Å), so the geometrical contribution is 
 

38.1
6



                                   (4) 

Labeling a renormalized d-electron plasma frequency with 
de [ 5], 

/5.41 eVde                               (5) 

and the maximum oscillation amplitude d  is about 0.5 Å. 

 
 
2.B. Plasmas of delocalized s-electrons 

 
The s-electrons are those neutralizing the adsorbed 
deuterons ions in a lattice. They are delocalized and their 

plasma frequency depends on loading ratio (D/Pd 
percentage), by means of the following formula [5]: 

a
se

x

V

N

m

e


                             (6) 

where 





  pda V

V

N
1                              (7) 

and Vpd is the volume actually occupied by the Pd-atom. As 
reported in reference [5], 

/2.152/1 eVxse                            (8) 

As an example, for x=0.5, se ~10.7 eV/ħ. 
 
 

 
 
 
2.C. Plasmas of Pd ions 

 
Finally, plasmas created by Palladium ions forming the 

lattice structure must be considered. In this case, frequency 
can be demonstrated as being [5] 

eVpd 1.0                                  (9) 

 
 
 
 
 
3. Plasmas Within D2-Loaded Palladium 

It is known that deuterium is adsorbed when placed near 
to a palladium surface. This loading can be enhanced using 
electrolytic cells or vacuum chambers working at 
appropriate pressure [8, 9]. By means of the Theory of 
Condensed Matter by Preparata, it is assumed that three 
phases exist concerning the D2-Pd system, according to a 
x=D/Pd ratio: 

 
1) phase for      x<0.1 
2) phase  for  0.1<x<0.7 
3) phase for     x > 0.7 
 
In the  phase, D2 is in a disordered and non coherent 
state (D2 is not charged!). Concerning the other phases, the 
following ionization reaction takes place on the surface, due 
to lattice e.m.: 

 eDDlattice                               (10) 

According to the x=D/Pd loading percentage, deuterium 
ions can take position on octahedral sites (fig.1) or in the 
tetrahedral ones (fig.2) in the (1,0,0)-plane. According to 
the coherence theory, a deuterons plasma in an octahedral 
site is defined as -plasma, whereas a deuterons plasma in a 
tetrahedral one is defined as a -plasma. 
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It is possible to state that frequency of a -plasma is given 
by [5]: 

2/1
0 )05.0(  x                         (11) 

where 

/
15.01

2/12/1

2/1

0 eV
V

N

m

e

aaD


 





        (12) 

As an example, for a=0.4 and x=0.5, =0.168 eV/ħ. 
In tetrahedral sites, D+ can occupy the thin disk 
encompassing two sites (fig 3), thus forming a barrier to D+ 
ions. Notice that the electrons of the d-shell oscillate past an 
equilibrium distance y0 (about 1.4 Å), thus embedding ions 
in a static cloud of negative charge which can screen the 
Coulomb barrier. As reported in [5], 

/65.0
4

2
0

eV
ym

Z

D

eff 


                   (13) 

This frequency obviously depends also on the chemical 
conditions of palladium (impurities, temperature etc…). 
Due to a large plasma oscillation of d-electrons, a high 
density negative charge condenses in the disk-like 
tetrahedral region where the -phase D+ are located, giving 
rise to a screening potential W(t) whose profile is reported 
in fig. 4. It must be highlighted that the -phase depend on 
the x value and that this new phase has been experimentally 
observed [11].  
 
 
 
 
The new phase  is a very important one in LERN 
investigation. In fact, many cold fusion scientist claim that 
the main point of cold fusion protocol is that the D/Pd 
loading ratio must be higher than 0.7, i.e. that deuterium 
must take position in tetrahedral sites. 
 
 
 
 
 
 
 
 

Fig. 1. The octahedral sites of a Pd lattice where deuterons 
take position 

 
 
 
 
 
 
 

Fig. 2. The thin disks of tetrahedral sites of a Pd lattice 
where deuterons take place 

 

 

Fig. 3. Possible d-electron plasma oscillation in a Pd lattice 

 

 

 
Fig.4. The profile of the electrostatic potential in a 

arbitrarily direction η 

 
 
 
4. D-D potential 
 

As shown in reference [6], the phenomena of fusion 
between nuclei of deuterium in a crystalline lattice of a 
metal is conditioned by structural features, by the dynamic 
conditions of the system, and also by the concentration of 
impurities which are present in the examined metal. 
A study has been held of the curves of the interaction 
potential between deuterons (including a deuteron-plasmon 
contribution) in the case of three typical metals (Pd, Pt and 
Ti). A three-dimensional model showed that the height of 
the Coulomb barrier decreases on varying the total energy 
and the concentration of impurities which are present in the 
examined metal. 
A potential accounting for both the role of temperature and 
impurities is given by the following expression [6]: 

V r( )  k  0

2q

r
M V r

J k T R

rd M 






  (14) 

 
 In (14), the  V r M  Morse potential is given by: 

  

          V r J r r r rM      / exp exp  2 20 0 (15) 

 
Here parameters φ and r0 depend on the dynamic conditions 
of the system,  is a parameter depending on the structural 
features of the lattice, i.e. number of “d” band electrons and 
type of lattice symmetry, varying between 0.015 and 0.025.  
Obviously the Morse potential is used in an interval 
including an inner turning point ra and continuing towards 
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r=0 , where it approaches the Coulomb potential (fig 5). 
In reference [6], a fusion probability is obtained by means 
of the following formula ( is the zero crossing r-value of 
potential): 

  









  drrKP



0

2
2exp                    (16) 

where: 

     2/2 rVrK                     (17) 

This fusion probability is obtained using the reasonable 
value of 1021 min-1 for the nuclear rate, and it is normalized 
to a number of events per minute of 10-25 for =0.34Å, 
E=250 eV, T=300K and J=0.75 (high impurities case). 
Many experiments confirmed these fusion rate values 
concerning reactions 1 and 2 [10]. 
In this present work, the role of potential (14) is studied in 
accordance with the coherence theory of condensed matter, 
in the three different phases ,  and .  
 
In this theoretical framework, two key points need a 
clarification: 
1) what KT is. 
2) what the role of electrons and ions plasmas is. 
Concerning the first point and according to different 
deuteron-lattice configurations, KT can be:  

i) the lattice temperature if we 
consider deuterons in the -phase.  

ii)   if  we consider deuterons 
the in -phase.   

iii)  if we consider deuterons in the 
-phase 

The second point is a more controversial issue. In fact, the 
lattice environment is a mixture of coherent plasmas (Pd 
ions, electrons and deuterons plasmas) at different 
temperatures, due to different masses. Thus, describing an 
emerging potential is a very hard task. The method 
proposed in this present work is that of considering the total 
contribution of lattice environment at D-D interaction (i.e. 
Vtot) as a random potential Q(t). In accordance with this 
model, 

)()()( tQrVtVtot                           (18) 

obviously assuming that: 

0)( 
ttot tV                                 (19) 

That is, a second order potential contribution Q(t) is 
supposed to be a periodic potential whose frequency will be 
labeled by Q, oscillating between the maximum value Qmax 
and 0.  
The role of potential Q(t) is that of increasing or decreasing 
the barrier. The plot of potential Vtot for two different value 
of Q(t) is reported in figure 6. 
This means that the following main cases may occur in 
accordance with Q and with the energy of incoming 
particles to the barrier: 
1) the particle crosses the barrier in the point  
2) the particle crosses the barrier in the point ’  

Scenario 2) can be regarded as a worst case to obtain a high 
tunneling probability, and scenario 1) as a best case. 
To determine the model parameters, some hypothesis must 
be suggested on Q(t) and Q. In this present work, an 
approximation is made of Q(t) as equivalent to a screening 
potential W(t) due to d-electrons, as reported in fig 5. This 
means that Q ~ d. Obviously, there is a strong 
dependence between the scenario and the deuteron phase, 
since Q(t) is only the d-electrons screening potential, at first 
order. To resume, the following cases may occur in a 
palladium lattice according to the loading ratio: 
i) -phase 
In the  phase, deuterons are in a molecular state and 
thermal motion is about: 
0.02 eV < ħ < 0.2 eV  
This phase takes places when x is lower than 0.1. Since 
W(t) is zero, the D-D potential is: 







 

r

RJ
rVM

r

q
constrV Md


)()(

2

      (20) 

The expression (20) has been partially evaluated in a 
previous paper [6], only focusing on the dependence of a 
tunneling probability on impurities which are present within 
the lattice. In this present work, a correlation is made 
between potential features and loading ratio. Numerical 
results are shown in paragraph 6. 
ii-phase 
When x is higher than 0.1 but lower than 0.7, phase  
happens. The interaction takes place between deuteron ions 
oscillating by the following energy values: 
0.1 eV < ħ < 0.2 eV 
In this case W(t) is zero, so the potential is given by 
expression (21): 











r

RJ
rVM

r

q
constrV Md


)()(

2

     (21) 

Comparing expressions 20 and 21, it seems very clear that 
the weight of impurities is more important in the -phase. 
This conclusion is obviously in accordance with previous 
papers [6, 7], where the role played by temperature in the 
tunneling effect was studied. 
iii)-phase 
Finally, the deuteron-palladium system is in the  phase 
when the loading ratio is higher than 0.7. According to a 
synchronism between phase oscillations of deuteron and d-
electrons plasmas, the following two cases must be 
considered: 
Case 1: Q(t)=0 
In this case, the potential is a natural extension of formula 
(14), and can be written as: 











r

RJ
rVM

r

q
constrV Md


)()(

2

      (22) 

Case 2: Q(t)0 
This is the more interesting case. It happens when  is 
about Q and obviously when the respective oscillations are 
in phase. Deuterons undergo a screening due to the d-
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electrons shell, so a supposition is made that D-D potential 
must be computed assuming a disappearance of the well 
which is present in potential (14), due to Morse 
contribution. Indeed, using a classical plasma model where 
D+ ions are the positive charge and d-electrons are the 
negative one, it is extremely reasonable to suppose that the 
following potential must be used: 


















r

RJ
e

r
M

r

q
consttrV D

r

d
  




2

),( +Q(t) (23) 

where 

D

r

C e
r

rV 



 

)(                               (24) 

and D is the Debye length of this classical plasma. Notice 
that Q(t) is an unknown perturbative potential. About this, it 
can only be stated that: 

2
)( maxW

tQ
t
                               (25) 

As previously said, this is supposed to be a screening 
potential due to d-electrons and its role is supposed to be 
that of reducing the repulsive barrier. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 5. D-D potential features using a Morse potential 

 

 
 

 

Fig. 6. Potential features for two different arbitrary values     

     of Q(t). 

5. The barrier crossing treatment 
 
A discussion follows on how to handle the crossing of the 
barrier in the -phase and when Q(t) is different from zero. 
The starting point in any case is the Schrödinger equation: 

  0)(),()(
2

2

 rtrVEr tot 



              (26) 

Nevertheless, this is a difficult problem to solve. To handle 
this topic in a simple way, it can be observed that using 
Vtot(r,t)=V(r)+Wmax/√2, this problem concerns four main 
energy values E1, E2, E3 and E4 (check fig. 7). This problem 
is equivalent to the treating of a double barrier case. From 
reference [12], 

1E  a few eV;                        (27) 
2

2 2
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1 
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
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
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
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
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'4 DE                                      (30) 

 
  is the constant of metal anharmonicity and   is the 

vibrational constant. Another important quantity is D’, 
which is the depth of the potential well. According to the 
Morse potential (15), this is J/ . Now building an energy 
tensor Eij :  
E11=E1 
E22=E2 
E33=E3 
E44=E4 
Eij=Ei-Ej 
Eij=-Eji 

a square quadratic energy value can be defined: 

4

ij
ij EtrE

E                               (31) 

and a dispersion: 

4


 ji

ij
ij EE

                             (32) 

If we neglect the term Q(t) and consider only the random 
feature of deuteron energy, the following could be a 
reasonable value for K(r): 

   











   4)(2

1 ji
ij ETrE

rVrK


        (33) 

And finally: 

  





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  drrKP




0

2exp)(                    (34) 

D’ 

Fulvio Frisone
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 5 Volume 2, 2017



 

But according to statistical treatment, 

  ,, EPP                               (35) 

where 
=[Q(t)]                                    (36)  
as already seen concerning the phase. Since the greater 
contribution to Q(t) is supposedly due to a screening effect 
of d-electrons in the -phase (i.e. of random potential), any 
other case can be neglected and only the following two 
cases must be considered (i.e. featuring a double barrier 
approximation): 
1) Q(t) =0 →   = 0.34 Å.  
2) Q(t) 0 →   =0.16 Å 
Of course, case 2) is the more advantageous to obtain a 
high tunneling probability. 

 
 

 
 

Fig. 7. Features of V(r) and V(r)+Wmax/√2 
 
 
 
6. Results and discussion 
 

A presentation follows of the D-D fusion probability 
normalized to number of events per minute concerning D-D 
interaction in all different phases. More exactly, fusion 
probability in phases ,  and are compared, using a 
reasonable square average value of 200 eV and a  value of 
50 eV, in order to cross potential (14) in all four points E1, 
E2, E3 and E4 . The role of d-electron screening is also 
considered as a perturbative lattice potential. This treatment 
only concerns the case when Q(t) is different from zero, and 
implies changing the time-dependent problem of a 
tunneling effect into a double barrier problem. To resume, 
the emerging of a double barrier in the -phase is a new 
‘physics fact’. Notice that cold fusion scientists built up 
their expectations about a new phase, because screening 
enhances the fusion probability. From an experimental 
point of view, it is possible to state that three typologies of 
experiments exist in the phenomenology of cold fusion 
[13]:  
1) those that have given negative results.  
2) those that have given some results (little signs of 
detection with respect to background, fusion probability of 
about 10-25), using a very high loading ratio.  

3) those that have given clear positive results, like 
Fleischmann and Pons experiments. 
Nevertheless, our opinion is that the experiment like in 
point 3) are lacking in accuracy from an experimental point 
of view. For this reason, we believe that this theoretical 
model of the controversial phenomenon of cold fusion must 
only explain the experiments like in point 1) and 2). In this 
case, the role of loading ratio must be considered in the 
experimental results.  
Results about the -phase are shown in Table 1. In this case, 
it can be observed that the theoretical fusion probability is 
lower than 10-74, which is very small. It is possible to state 
that if the deuterium is loaded with a x < 0.2 percentage, no 
fusion event is observed! The same absence of nuclear 
phenomenon is compatible with a loading ratio of about 0.7 
(Table 2), since the predicted fusion probability is less than 
10-42 in this case. These predictions are obviously in 
agreement with the experimental results. But for x>0.7, a 
full range of valid experiments on cold fusion has reported 
some background spikes (check reference [10] as an 
example). A remarkable result of our model is shown in 
Table 3: some background fluctuations can be observed in 
the -phase, since we predict a fusion probability about  
10-25 due to a very high loading ratio. This represents a new 
result with respect to references [6, 7], since in those cases 
the fusion probability was independent of loading ratio. In 
order to predict a very noteworthy nuclear evidence (about 
10-17),  must be comparable with Q (Table 4). Only 
under this condition can the screening potential enhance the 
tunneling probability and the D-D interaction become a 
like-Debye potential. The condition allowing this 
equivalence result of  to Q will be discussed in another 
paper. Here, we only underline that it is a very unlikely 
condition. 

 

TABLE I 

Fusion probability has been computed for “impure” Pd (J 
%75.0 ), using a -potential (potential 20), and 

normalized to a number of event/min for different values of 
energy (=±50 eV).  

Palladium J  0 .75% ,   0. 34 Å, eVE 200  

  0.05 eV    0.1 eV    0.15 eV    0.2 eV 

 -50 P 10-100 

-40 P 10-99 

-30 P 10-97 

-20 P 10-95 

-10 P 10-94 

0  P 10-92 

10 P 10-91 

20 P 10-90 

30 P 10-89 

40 P 10-86 

50 P 10-84 

-50 P10-103  

 -40 P10-101 

 -30 P10-100 

 -20 P 10-99 

  -10 P10-97  

  0  P 10-96 

  10 P 10-94 

  20 P 10-92 

  30 P 10-90  

  40 P 10-89 

  50 P 10-87 

-50 P10-100 

 -40 P 10-98 

 -30 P 10-96 

 -20 P 10-94 

 -10 P 10-91 

  0 P  10-90 

 10 P 10-87 

 20 P 10-85 

 30 P  10-82 

 40 P 10-80 

 50 P 10-79 

  -50 P10-99 

  -40 P10-97 

  -30 P10-96 

  -20 P10-93 

  -10 P10-90  

  0 P 10-86 

  10 P 10-83 

  20 P 10-80 

  30 P 10-78 

  40 P 10-74 

  50 P 10-71 
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TABLE II 

Fusion probability has been computed for “impure” Pd (J 
%75.0 ), using a -potential (potential 21), and 

normalized to a number of event/min for different values of 
energy (=±50 eV). 
 

Palladium J  0 .75% ,   0. 34 Å, eVE 200  

  0.33 Å   0.68 Å    1.03 Å   1.38 Å 

-50 P10- 83 

-40 P10- 81 

-30 P10- 80 

-20 P10- 79 

-10 P10- 78 

0  P10- 76 

10 P10- 75 

20 P10- 74 

30 P10- 73 

40 P10- 72 

50 P10- 71 

-50 P 10- 88  

-40 P 10- 87 

-30 P 10- 86 

-20 P 10- 85 

-10 P 10- 84  

 0 P10- 82 

10 P 10- 81 

20 P 10- 79 

30 P 10- 76  

40 P 10- 75 

50 P10- 70 

-50 P10- 86 

-40 P10- 85 

-30 P10- 83 

-20 P10- 80 

-10 P10- 74 

 0  P10-73 

10 P10- 72 

20 P10- 71 

30 P10-70 

40 P 10-69 

50 P 10-65 

-50 P10- 81 

 -40 P10- 75 

 -30 P10- 73 

 -20 P10- 70 

 -10 P10- 68  

 0 P10- 62 

 10 P10- 60  

 20 P10- 54 

30 P10- 50 

40 P10- 45 

50 P10- 42

 

TABLE III 

Fusion probability has been computed for “impure” Pd (J 
%75.0 ), using -potential with Q(t) =0 (potential 22), 

and normalized to a number of event/min for different 
values of energy (=±50 eV). 

Palladium J  0 .75% ,   0. 34 Å, eVE 200  

  0.6 eV    0.65 eV   0.7 eV   0.75 eV 

150 P10-75 

160 P10-74 

170 P10-73 

180 P10-70 

190 P10-69 

200 P10-68 

210 P10-66 

220 P10-64 

230 P10-63 

240 P10-61 

250 P10-60 

150 P10- 55 

160 P10- 52 

170 P10- 47 

180 P10- 45 

190 P10- 43 

200 P10- 42 

210 P10- 41 

220 P10- 40 

230 P10- 39 

240 P10- 37 

250 P10- 35 

150 P10- 58  

160 P10- 57 

170 P10- 53  

180 P10- 48 

190 P10- 44  

200 P10- 54 

210 P10- 46  

220 P10- 42 

230 P10- 35  

240 P10- 34 

250 P10- 31 

150 P10- 65 

160 P10- 62 

170 P10- 59 

180 P10- 55 

190 P10- 50  

200 P10- 44 

210 P10- 38 

220 P10- 35 

230 P10- 31 

240 P10- 28 

250 P10- 25 

 

 

TABLE IV 

Fusion probability has been computed for “impure” Pd (J 
%75.0 ), using a Debye potential (potential 24), and 

normalized to a number of event/min for different values of 
energy (=±50 eV). 

Palladium J  0 .75% ,   0. 34 Å, eVE 200  

D  0.3175 Å D  0.635 Å D  0.9525 Å D1.27 Hz Å 

 -50 P10- 65 

-40 P10- 62 

-30 P10- 60 

-20 P10- 55 

-10 P10- 53 

0  P10- 52 

 -50 P10-62 

-40 P10-58 

-30 P10- 56 

-20 P10- 55 

-10 P10- 53 

  0 P10- 51 

 -50 P10- 53 

 -40 P10- 50 

 -30 P10- 46 

 -20 P10 -42 

 -10 P10- 40 

 0  P10-36 

 -50 P10- 53 

 -40 P10- 52 

 -30 P10- 50 

 -20 P10- 46 

 -10 P10- 43 

 0  P10- 37 

10 P10- 51 

20 P10- 50 

30 P10- 49 

40 P10- 47 

50 P10- 45

10 P10- 50 

20 P10- 49 

30 P10- 46 

40 P10- 43 

50 P10- 40 

 10 P10- 35 

 20 P10- 32 

 30 P10-31 

 40 P10-30 

 50 P10-29 

 10 P10- 33 

 20 P10- 28 

 30 P10- 25 

 40 P10- 20 

 50 P10- 17

 
 

The principal theoretical objective of this section is that of 
demonstrating whether there is a relationship between low 
energies, if lattice deformation  at room temperature can 
influence the process of fusion.  
In particular, the probability of fusion within a microcrack 
was calculated to evidence a possible “enhancement of the 
tunneling effect”. 
Further, the aim is to evaluate theoretically the influence of 
the concentration of impurities using the trend of the curve 
of potential. A very high barrier is found within the pure 
lattice (J=0.25% approx.). While for the impure metal 
(J=0.75% approx.), maintaining the same thermodynamic 
conditions for the system, there may be a higher probability 
of fusion, with a lower total potential energy so that the 
tunneling effect is enhanced.  
 
7. Deformation 
 
This communication reports an analysis of the influence of 
variations in the thermodynamic conditions which could, as 
a result of deformation, produce dislocations in the lattice 
and microcracks which may be able to concentrate in their 
vicinity a significant fraction of the deuterons present in the 
metal, catalysing a chain reaction which could favour the 
process. Further, the study researches a relation between 
low energies to confirm the hypothesis regarding 
microcracks by means of theoretical quantitative 
estimations of  the coefficient of structural deformation[1] 
  of the perturbed crystalline lattice, independent of time. 
More precisely, the probability of fusion within a 
microcrack was calculated and compared with that 
calculated on the surface, to evidence a possible enhancing 
effect, also taking into consideration the vibrational states 
of the deuterons. Theoretical indications which we consider 
interesting. 
In agreement with the hypothesis of “chain reaction” 
proposed in reference[1], it was found that the appearance 
of microcracks, in effect, increases the rate of deuteron 
fusion within the lattice. 
We also analyse the trend of the curve of potential of 
deuteron-plasmon interaction within the Palladium lattice, 
from which it can be deduced that the thickness of the 
Coulomb barrier is reduced on varying the total energy and 
the percentage of impurities present in the metal. The 
tunneling effect was again calculated in order to evidence 
any possible enhancement of this effect within the 
microcrack. 
 
8. The three-dimensional model 
 
This section considers whether, and within what limits, the 
number of fusions within a generic cubic lattice could be 
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conditioned or influenced by both extensive lattice defects 
and other characteristics and thermodynamic conditions. In 
fact, in the case of internal perturbation, the interaction 
between the impurities present and the dislocations which 
are produced in the metal during deformation can 
significantly modify the electrical properties of the 
material.  
Possible deformations produced in the crystalline lattice by 
variations in the temperature are also considered. 
Further, under conditions far from saturation, the rate of 
fusion within the metal depends on the number of 
deuterium nuclei absorbed per unit of time, and also this 
could depend on the deformation of the lattice. 
If this effectively occurs, it is not difficult to hypothesise 
that the energy produced by the micro-explosions within 
the microcracks present could favour the formation of new 
microcracks, which in turn would capture further deuterons 
by the same mechanism. 
In a three-dimensional model, the probability of fusion 
between deuterium nuclei (where no microcrack exists, that 
is in a zone on the surface of the crystalline lattice), is equal 
to the probability of penetration in a Coulomb potential 
barrier  V r , given by: 
 

 

















   drrVEP sureffsur




0

2
)(

1
2exp



       (34) 

   is approximately 0.11 Å , E  is the total initial energy 
in eV, principally thermal in nature,  is Planck’s constant, 
and  is the reduced mass of the deuterons. The process of 
fusion within crystalline lattices can be schematised 
supposing that the electrical charge is uniformly distributed  
on a thin spherical shell and is equal to the range of 
effective interaction between the nucleons, which can be 
described in terms of an effective Coulomb potential: 
 

V r
q

r
consteff ( )  

2

            (35) 

 
where q  is the deuteron charge. 
It is known that in the presence of interactions between 
deuterium nuclei and collective phonic excitation in the 
metal, the number of fusions f  in a gas consisting of   
deuterons with density    is given by:  
 

  f  
4 1 




d p
         (36) 

 
where  d   is the reduced mass of the deuterium nuclei,  

p  is their impulse,  and where the parentheses      
represent the thermal mean. Examining, for convenience, a 
CFC lattice structure subjected to deformation, it is possible 
to calculate the probability of fusion, , within a 
microcrack, on varying the temperature. 
Denoting the volume of a single cell by d , the 
deformation of the entire lattice is given by:                    
 

 
 



















  d

JkT

F
D

kTa

bhL
J k

k
i

r

2
exp~

2)(


       (37) 

 
 
J  is the concentration of impurities,   is a parameter 
which depends on the lattice and electronic structure of the 
metal under consideration, ,  ( )r  is the number of 

dislocations;  i bhL  represents the independence of the 
internal stress from the external conditions and the 
hypothesis, valid in this approximation, is that the energy of 
the barrier in different states of near equilibrium of nuclei 
within the lattice, which includes the stress under 
conditions of non-equilibrium, is very small if not almost 
zero.  i  refers to the stress within the lattice; bh  are two 
parameters which depend on the dislocations; L  is the 

length of the dislocation; a 2 is the position of equilibrium 
of the dislocation core, separated along a “split” in the 
crystalline lattice with symmetry, in this case, of CFC; kT is 
the thermal energy to which the metal is submitted, which 
at room temperature is approximately 0.025eV); 2Fk  is 

the Helmholtz free energy; Dk  represents the point of 
minimum approach, within a microcrack, between the 
deuterium nuclei with energy kT; J  is the concentration of 
impurities around a dislocation. 
We have already suggested that a greater number of events 
could occur within a microcrack, under appropriate 
conditions the possible consequence of a dislocation, than 
on the lattice surface. To demonstrate this, approximate 
calculations were made, taking into account the lattice 
deformation and the depth of the microcrack. Taking the 
centre of mass as the reference system, the probability of 
fusion can be written as [1] : 
 

  







  drrKP



0
int

2

int
2exp          (38) 

where     is approximately 0.11Å,    r
int

  is given 

by: 

     2
int /2 rVr            (39) 

 
E   is the total initial energy in eV, principally thermal in 
nature,  is Planck’s constant,  is the reduced deuteron 
mass. Equations (38) - (39)  refer to the process of fusion 
within a microcrack. The Coulomb potential  V r , 
containing the temperature contribution, is given by the 
expression: 
 

V r( )    k  
0

2q

r
M V r

J k T R

rd M 






   (40) 

In  (41),   V r M   is the Morse potential, given by: 

 

          V r J r r r rM      / exp exp  2 20 0 (41)  
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J  indicates the concentration of impurities present in the 
metal, while the parameters  , r0    depend on the 
dynamic conditions of the system. 
  is a parameter which depends on the structural 
characteristics of the lattice, the number of “d” band 
electrons and the type of lattice symmetry, varying between 
0.015 and 0.025.  
If (38)  is divided by (36)  and multiplied by (37), it 
follows that: 

 

























   


exp int2

4 1
0

r dr

pf
d




 



      (42) 

 
Expression (42) represents the probability of fusion of 
deuterons within a microcrack: this is inversely 
proportional to the number of nuclei absorbed by the metal. 
In the context of the approximations applied, the probability 
of fusion so calculated is equal to the coefficient of 
deformation of the corners per unit of total deformation of 
the entire lattice.  
Using (42) and adopting both the Morse and effective 
potentials, the probability of fusion, normalised to the 
number of events per minute, was calculated using a 
simulation programme.   
 
 

 V r k q V r
J Reff( ) ( ) 









2  


           (43) 

 
where  is the mean kinetic of the gas, and   is the 
vibrational energy, typically of the order of some eV  for 
the quantum states considered. 
 

 
    
Fig. 1. Comparison between the potentials (41) and (43), 
for J  0.75% and J  0.25%, respectively, at temperature T 
= 280 K. In the first case. both the height and thickness of 
the potential barrier are reduced.  
 
 
 

 
9. Conclusions 

 
As a conclusion, we have shown that the model 

proposed in this present paper can explain some anomalous 
nuclear traces in solids, but definitely jeopardizes any hope 
about the possibility of controlled fusion reactions in matter. 

In the first part of the work we cosiderato various 
parameters type the potential function of time, the number 
of d electrons, the depth D of the Coulomb 'barrier, the 
various energy levels and their tensors. The effective 
interaction between the deuterons inside the metal: it in fact 
shows that the coupling between plasmons and deuterons, 
in the presence of impurities, is able not only to decrease 
the thickness, but also to lower the height of the barrier 
Coulomb K in various types of deuterated lattices. 

  We also assumed that instead of a static Coulomb 
barrier are two together that oscillate and for this reason 
that the phenomenon of cold fusion is open to any road both 
theoretical and experimental. 

 
References 

 
[1]  IWAMURA et al., Elemental Analysis of Pd 

Complexes: Effects of D2 Gas Permeation. Jpn. J. 
Appl. Phys. A,Vol. 41: p. 4642. (2002.) 

[2] O. REIFENSCHWEILER, Reduced radioactivity of 
tritium in small titanium particles. Phys. Lett. A, 
Vol.184: p. 149 (1994.) Physics Letters A,Vol. 184, 
p.149 (1994). 

[3] O. REIFENSCHWEILER, Some experiments on the 
decrease of tritium radioactivity. Fusion Technol.,  
Vol. 30: p. 261. (1996) 

[4] Rothwell, J., Introduction to the Cold Fusion 
Experiments of Dr. Melvin  Miles. Infinite Energy,. 
Vol.3(15/16): p. 27. (1997) 

[5] G..PREPARATA, QED Coherence in Matter, World 
Scientific Publishing  (1995). 

[6] F. FRISONE, Theoretical Model of the Probability of 
Fusion Between Deuterons Within Deformed 
Crystalline Lattices with Microcracks at Room 
Temperature Fusion Technology,Vol. 40, N.2 pp.139 
146, (2001). 

[7] F. FRISONE, “Deuteron interaction within a 
microcrack in a lattice at room temperature”, Fusion 
Technology, Vol. 39, N.2,pp.260-265, (2001). 

[8] M. FLEISCHMANN and Pons, Etalonnage du 
systeme Pd-D2O: effets de protocole et feed-back 
positif. ["Calibration of the Pd-D2O system: protocol 
and positive feed-back effects"]. J. Chim. Phys., 
Vol.93, p. 711(1996) (in French). 

[9] A.DE NINNO et al. Evidence of emission of neutrons 
from a titanium-deuterium system". Europhys. Lett.,. 
Vol.9 p. 221. (1989) 

[10] Heui Kyeong An, et al. “Analysis of Deformed 
Palladium Cathodes Resulting From Heavy Water 
Electrolysis”. Fusion Technology Vol. 27 pp. 408-
415 ,(1995) 

Fulvio Frisone
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 9 Volume 2, 2017



 

[11] J.MENGOLI et al. The observation of tritium in the 
electrolysis of D2O at palladium sheet electrodes. J. 
Electroanal. Chem.,.Vol. 304: p. 279. (1991) 

[12] C.DeW. VAN SICLEN and S.E.,Jones, Piezonuclear 
fusion in isotopic hydrogen molecules. J. Phys. G: 
Nucl. Part. Phys.,. Vol.12 p. 213 (1986).  

[13] D.MORRISON, The Rise And Decline of Cold Fusion. 
Physics World , p. 35,(1990). 

Fulvio Frisone
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 10 Volume 2, 2017




