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Abstract: - Theoretical research of the problems on boundary control of phase transition is conducted by 

creation of physical and mathematical models of the corresponding physical phenomena. The models are 

constructed, whenever possible, simple but reflecting main features of the studied phenomena. Complex 

mathematical models for the most general cases are realized on computer. So, in a task about stabilization of a 

garnissage the regions of system’s instability are calculated on computer in a wide range of the varied 

parameters, and the values of coefficient of feedback control for the regulator intended for suppression of 

unstable modes of the boundaries’ oscillations are defined. In a view of complexity of the considered magneto-

hydrodynamic and thermal phenomena the most influential factors are considered, which have a principal 

importance in the studied systems. The constructed physical and mathematical models may be useful in further 

developments for the solution of more complex practical tasks. Under control of the boundary form of phase 

transition by means of systems of automatic control on the interface connected with the regulator the 

impedance boundary conditions are stated. And, as the regulator is, as a rule, connected to a considerable power 

source, the reverse influence of object on the regulator is insignificant and can be neglected that substantially 

simplifies a task. The results may be of interest for the problem of the wall protection with artificial garnissage. 
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1 Introduction 
Problems of stability and stabilization (in case of 

instability) for the boundaries of phase transition are 

considered accounting many factors modeling 

various cases of real physical conditions. It is 

possible to refer multiple layers of walls of channels 

which may contain some layers of various materials 

of different thickness and physical properties, 

influence of convection on stability of boundaries of 

phase transition, dependence of the proceeding 

processes on physical properties of melts, casual and 

regular perturbations of a thermo-hydrodynamic 

condition of the medium in and out of the 

considered system, etc. to such factors [1-4].  

In case of system’s instability the device of 

automatic control of the heat fluxes [1,2] based on 

the phenomenon that perturbation of a boundary of 

phase transition leads to the perturbation of a 

magnetic field causing corresponding change of 

current in a winding is used. This current, after 

strengthening in the operating chain, directs 

secondary current in thin a skin-layer near the 

interfacial boundary separating the phases and the 

Joule heat fluxes cause suppression of the 

corresponding perturbations. For each harmonic 

mode of oscillation the impedance boundary 

condition of a form is obtained:  

                          ,

, ,

m k

m k m k

dT
G T

dn
 ,                    (1) 

where 
,m kG  is the coefficient of the feedback 

control system for suppression of the oscillation 

mode with the wave numbers m and k. The 

parameter 
,m kG , as shown in [2], may have any real 

values. The boundary condition (1) can be 

considered as the law of feedback of the operating 

system. For control of several harmonicas in a 

control system on each mode there is the winding 

with individually adjustable coefficient of feedback 

that allows achieving high degree of resolution.  

From all control methods for the boundaries of 

phase transition of electro-conductive liquids the 

greatest distribution in practical applications was 

gained by the electromagnetic method. 

Electromagnetic fields are used in metallurgy and 

electric welding in various purposes: for 

intensification the heat- and mass transfer processes 

(excitation of oscillations of the phase transition 

boundaries and management of melt circulation by 

means of alternating and running fields), for 
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management of magneto-hydrodynamic and thermal 

instabilities in processes of the MHD-technologies, 

etc. Problems of stability and stabilization (in case 

of instability) for the boundaries of phase transition 

are considered accounting many factors modeling 

various cases of real and physical conditions.  

 

 

2 Problem of instability of the phase 

transition boundaries 
Increase of efficiency of metallurgical and electro-

welding processes is often limited to overcoming 

need of different magneto-hydrodynamic 

instabilities, in particular, instability of the phase 

transition boundaries (fronts of crystallization) of 

the melts and diverse liquids. For example, 

instability of a thin layer (film) of a solid phase of 

the metal called garnissage and intended for 

protection of walls of the metallurgical units against 

destruction, doesn't allow using effectively artificial 

garnissage [2-4], known in metallurgy mostly as the 

negative phenomenon [5]. Instability of a garnissage 

layer worsens also quality of melt due to its 

pollution with material of the channel walls or 

crucibles of metallurgical units. 

Magneto-hydrodynamic systems with existence 

of boundaries of phase transition (solidification) are 

systems with the distributed parameters, which 

behavior in space and time is described by the 

partial differential equations (PDE). From the theory 

of automatic control of processes in continua it is 

known that quite often unstable linear object can't be 

stabilized with just programmed influence, whereas 

control by the principle of feedback, at which the 

level of operating influence is connected with 

perturbation of a system, is more effective.  

The devices of automatic control by the heat 

fluxes [1,2] intended for stabilization of the phase 

transition boundaries of electro-conductive liquids 

can be constructed, for example, on use of high-

frequency electromagnetic fields. The action 

principle of such systems is the following: the 

curvature of the phase transition boundary causes 

change of current in the operating winding. The 

induced secondary current in a thin skin-layer, 

almost coinciding with a boundary of phase 

transition, owing to Joule thermal emissions 

stabilizes a surface of the front of solidification, etc. 

Choosing the parameters of a control system 

[1,2] allows achieving the suppression of practically 

any kind instability of boundaries of phase transition 

that opens possibility for stabilization of a 

garnissage and excludes possibility of contact of 

metal with the channel walls and crucibles of 

metallurgical devices [2-4].  

 

 

2.1 Control of boundaries in continua 
Theoretical research of problems of the boundary 

control of phase transition is conducted by creation 

of physical and mathematical models of the 

corresponding physical phenomena. The models are 

constructed, whenever possible, simple but 

reflecting main features of the studied phenomenon. 

Complex mathematical models for the most general 

cases are realized on computer.  

There are many works on description of various 

features of interaction of electromagnetic fields with 

liquid metals and on  application of the revealed 

effects in technologies [3,6-9], however in 

metallurgy and electric welding a little attention, 

despite importance of this task for practice is still 

paid to research of features of the boundary control 

in phase transition. By control of the boundary form 

of phase transition by means of systems of 

automatic control [2] on the interface connected 

with the regulator the impedance boundary 

conditions are stated. And, as the regulator is, as a 

rule, connected to a considerable power source, the 

reverse influence of object on the regulator is 

insignificant and can be neglected that substantially 

simplifies a task. 

 

2.1.1 Thin skin-layer near crystallization surface 

At the boundary control of phase transition by 

means of high-frequency electromagnetic fields of 

the above-mentioned way [1,2] the impact on a 

boundary is thermal (Joule thermal emissions) 

owing to what the frequency of an electromagnetic 

field cannot appear in the solution of a task if 

connection with a control system is set by means of 

conditions (1). In this case control of a configuration 

of liquid and solid phases is based on the 

phenomenon that the field freely penetrates through 

a thin layer of a wall solid phase and quickly fades 

(owing to a considerable difference in conductivity 

of phases) in a thin skin-layer near a crystallization 

surface. Thus, as a first approximation, the skin-

layer thickness can be neglected considering it much 

less than characteristic size of an ingot and 

assuming it coinciding with a surface of 

crystallization (solidification), which actually is also 

an area of some thickness. 

 

2.1.2 Frequency of oscillations of the interfacial 

form for crystal-melt 

Oscillations of the boundary of phase transition, as 

shown in [2-4], are low-frequency unlike 
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fluctuations excited by fields through an action of 

ponderomotive forces, i.e. such systems have 

considerable inertness in the thermodynamic 

relation. Stabilization of boundary of phase 

transition (suppression of unstable harmonicas) 

happens due to Joule heat fluxes owing to what the 

action of a field is not direct and, as showed 

researches; the power expenses are rather small. It is 

known [10] that the interfacial form crystal-melt 

significantly changes depending on crystallization 

conditions.  

Real interfacial surfaces owing to high diffusive 

mobility of atoms at a temperature of melting and 

rather low value of surface energy have an essential 

curvature in the scales commensurable with sizes of 

an elementary cell. Degree of a roughness of an 

interfacial surface crystal-liquid phase is defined by 

change of its free energy in the course of chaotic 

accession of atoms [10,11]. A curvature of 

boundaries of phase transition is a consequence of 

loss of stability as a result of action of the field of 

stresses and deformations.  

 

 

2.2 Stabilization of boundaries in continua 
Application of electromagnetic fields gives the 

chance to stabilize the deformation of boundaries of 

phase transition that in certain cases has paramount 

importance. Such oscillations of the boundaries 

have some regularity, which is considered here. 

 

2.2.1 Physical model of the system 

Investigation of the excitation and suppression of 

oscillations of the phase change boundaries of 

transformation from liquid to solid state is starting 

from the case of Eigen oscillations.  

The cylindrical channel which wall can consist 

of any finite number of layers of various materials is 

considered. On an internal surface of such channel 

there is a thin layer of a solid phase (film) formed 

from a melt in the channel by creation of special 

temperature condition. The solid film on channel 

walls (garnissage), on the one hand, protects walls 

from thermal and other destroying influences and, 

on the other hand, protects melt from pollution by 

different impurity that is important for branches of 

special metallurgy in which increased requirements 

to purity of the melted and (or) transported liquid 

metal are imposed. 

The block diagram of the studied physical 

system including a configuration from liquid and 

solid phases of the same material is submitted in 

Fig.1, where 0R - the radius of the area occupied 

with melt, 
0r - thickness of a layer of a solid phase (a 

film, a garnissage), 
0r R - a cylindrical surface of 

melt crystallization (the front of crystallization, 

border of phase transition from a liquid to solid 

state), 
0 0r R r  - the internal radius of the channel. 

The task is considered in cylindrical coordinate 

system 0r x , the axis 0x  is directed along the 

symmetry axis of the channel.  

 
Fig.1 Cylindrical configuration liquid-solid phases  

with interfacial boundary from liquid to solid 

 

Actually the form of interfacial surface crystal-

melt is never expressed by smooth function as it 

significantly depends on conditions of 

crystallization [10,11]. The relief of a surface of 

crystallization undergoes perturbations, both in 

scales of the sizes of crystallites, and in scales, 

commensurable with area of distribution of the 

distortions caused by capillary forces. Mostly we 

consider effects of the second type, i.e. we neglect a 

microstructure of the phase transition boundary.  

Value of surface energy on the boundary of a 

pure crystal and liquid phase can be determined by 

comparison of a structure of a pure crystal and 

liquid. By metal melting its specific volume 

increases approximately by 3% that occurs because 

of increase in average distance between atoms and, 

as a result, - increases in a potential component of 

internal energy. Because of more disorder structure 

of liquid metals in comparison with the solid phase 

there is a distortion of a surface crystal-melt [10,11]. 

Therefore real interfacial boundaries owing to high 

diffusive mobility of atoms at a temperature of 

melting and rather low value of surface energy are 

significantly curved in scales of the sizes of an 

elementary cell. However we consider processes at 

the macro-level when the characteristic linear size 

of system considerably surpasses the scale of an 

elementary cell and thereof the accepted structural 

scheme correctly reflects a state of physical system 

in macro-level.  

Considering model of physical system according 

to the presented structural scheme, we believe that 

in an equilibrium state the surface of crystallization 

0r R  has the constant temperature equal to the melt 

crystallization temperature T
, and conditionally we 
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replace an area of phase transition with a surface 

(cylindrical area of zero thickness). Also we 

consider that surface is deformed only continuously, 

without rupture. Then the mathematical model of 

the described system can be presented as follows.  

 

2.2.2 Mathematical model of the system 

The mathematical model of the considered system 

has to include the equations of mass, impulse and 

energy conservation for liquid and solid phases 

(taking into account a channels’ wall) with the 

corresponding boundary conditions. Generally it is 

the conjugated boundary task, which solution 

represents independent interest. We focus on  

possibility of the boundary control, suppression of 

its instability, the equilibrium state is supposed 

known and for the purpose of simplification of the 

considered tasks for its description various simple 

mathematical models reflecting only the main 

features of physical process.  

Thus, if melt is immovable in the unperturbed 

state and the phase transformations are absent, then 

the equation array of mass and impulse conservation 

are satisfied and the energy equations is  

 
2

1 1n nn n
n n

TT T

r r r r r


 

 

  
  

   

  
 

    
     

                      0n

n

T

z z



 
 

 
 
 

,               (2) 

where index n means n-th layer, 1,n N , n=1 

corresponds to melt, n=2- to solid film, 3,n N - 

the layers of the channel’s wall. 

The heat conductivity coefficient generally is 

considered variable (depends on temperature) 

because at small thickness of layers and big 

differences of temperatures dependence n  from 
nT  

can affect behavior of system. Thicknesses of layers 

are respectively designated nr , where
1 0 2 0,r R r r  , 

etc. The boundary conditions for system of the 

differential equations (2) are stated as follows: a 

symmetry condition on channel axis, equality of 

temperatures and thermal fluxes on all boundaries of 

interface of layers and temperature conditions on an 

external surface of the channel, for example, the law 

of heat exchange with surrounding environment. 

Therefore account the above stated yields:   

0 ;0, ( )n nz T T r     , ( );n nlz L T T r     

   
1 0 );0, (r T T z     

1

,
n

i

i

r r


  1,n nT T 
 
      (3) 

 1 1 ; , ,n n n n N N N NC N cdT dr dT dr r r dT dr T T          

where 
NC , 

cT  are the coefficient of heat transfer for 

N-th layer (external) with surrounding medium and 

the temperature of surrounding medium, 

respectively. 

If the system has an axial symmetry (a flow 

without twisting, a wall of uniform by   layers), the 

equations (2) become simpler and boundary 

conditions (3) allow closing the corresponding 

boundary task. The solution of such boundary-value 

tasks will be given below for a number of concrete 

physical situations as within the linear low-

amplitude theory the equations of the perturbed 

system are linearized relating the unperturbed 

(equilibrium) state described by these tasks.  

 

2.2.3 Oscillations of the melt solidification front  
Under certain conditions the described equilibrium 

condition of the system can be broken by casual or 

regular internal or external perturbations. Therefore 

it is interesting to consider a perturbed system. Such 

task within the linear low-amplitude theory can be 

considered as follows. We assume that in some time 

point all parameters of the system (temperature, 

pressure, boundary of the phase transition, etc.) 

received small perturbations in the form of 

progressive waves  

                    ( )( ) i kx m tq Q r e                           (4) 

where Q - complex amplitude of perturbation. 

 

2.2.4 Mathematical model of perturbed system 
With account of the above and (2) linearization of 

the perturbed equation array gives 

                   ,( )n
n n n nc div

t


  


 


                  (5) 

where n , nc - perturbations of temperature and 

coefficient of heat capacity for n-th layer (for 

simplicity in many cases it is supposed 

, ,n n nc const   ). In more complex case the influence 

of convection on a system’s stability (spreading of 

small-amplitude perturbation) is taken into account, 

the equation array for perturbations is as follows:   

  1
1 1,div v

t





 


   ( )n

n n n nc div
t


  


 


,         (6)                     

1
1

1

1
,

v
p

t 


  


    1

1 1 1 1 1 1 ,c v T div
t


  


   



 
 
 

 

where 1T - temperature distribution for equilibrium 

system, 1v , 1 - perturbations of flow velocity and 
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pressure, 2,n N .  Coefficients of heat diffusivity 

are considered as constants and melt inviscid. 

Further influence of melt viscosity on development 

of perturbations of system will be shown, here it is 

important to be limited to the remark that at many 

metal melts viscosity is rather low (for example, at 

cast iron the kinematic coefficient of viscosity is 

less, than at water) and dissipative processes don't 

play an essential role.  

Let us analyze consecutively the systems (5) and 

(6). The boundary conditions for (5) include as 

subset the boundary conditions for (3), therefore:  

- on the interfacial boundary of phase change 

stated as progressive wave ( )

0 1 i kx m ter R         

the temperature perturbation is zero, therefore with 

accuracy to linear terms follows 

       
0

( )

0 0, , 0j i kx m t

j

r R

T
R x R e

r
     



 
 

 





,        (7) 

where j=1,2; on the same surface the conditions of 

mass and heat conservation yield at 0 ,r R  

   211
r

u
t




 


, 2 1
2 1 2 21

r

r r t

 
   
  

 
  

,    (8) 

where /r t  - speed of the front crystallization, 

21 2 1,  
21 - specific heat of melting; 

- on the axis of channel from the symmetry 

condition, absence of the velocity and temperature 

perturbations results 

                 0r  ,    0u  ,    1 0T  ;               (9)                                                   

- on the boundaries of solid layers the conditions 

of equal temperatures and heat fluxes yield 

     
1

;
n

j

j

r r


   
1,n n     1

1
n n

n n

d d

dr dr

 
  

 ;       (10)         

- on the external surface of the channel, which 

may be thermo-isolated or performing heat 

exchange with surrounding (and in case of system of 

heat control it may be automatically controlled) the 

following condition is stated  

              
1

;
N

j

j

r r


   
,

N
N k m N

d
G

dr


   .                 (11)       

Here 
,k mG  may be 0, 

NC  or equal to the coefficient 

of the feedback control system [2] for the three 

above considered cases. The set of the equations and 

correlations (4)–(11) represents the mathematical 

model for considered physical system. To reveal the 

dimensionless criteria determining the processes, as 

well as for generalization of the model, it is useful 

to transform it to dimensionless form.  

2.3 Dimensionless form of the model 
Introduced as the scales for the length, time, 

frequency, velocity, pressure, density and 

temperature, respectively 
0R , 2

0 1R a 
, 2 2

1 0a R
, 

2

1 0a R
, 4 2

1 1 0a R  
, 

1 
 and T , the equation array 

(4), (6) transforms to the dimensionless form:  

   0i kx m F
q Q r e

  
 , 1

1 1Fo
div v





 


, 11

1

1

1

Fo

v
p


 





,            

 1 111
1 1

1 1

,
Fo

div
v T

c

 




 





  

,
Fo

n nn

n n

div

c

 









  (12) 

where 2 2

1 0Fo a t R - Fourier number (ratio of 

characteristic time of the process to the relaxation 

time of temperature perturbations),  

1n n    ,  
1n nc c c  ,  

1n n    ,  2 1
1

1 1

a
c








 

 , 

where hyphens mean dimensionless values, and 

asterisks - belonging to a condition of phase 

transition. Melt is supposed almost incompressible 

owing to what heat of expansion (compression) can 

be neglected. Further, the same as earlier, we omit 

hyphens at dimensionless sizes for simplicity. 

The boundary conditions (7)-(11) are:   

1r  ,     0 ,0i kx m Fj

j

T
e

r
    

 



   1,2j  , 

 211
Fo

r
u 


 


, 2 1

21

1 Fo

R r

r r
 




 
  

  
;  (13) 

       0r  ,    0u  ,    1 0  ;                       (14) 

  
1

,
n

j

j

r r


  
1,n n    

1 1 ;n n n

n

d d

dr dr

  


      

                  
1

,
N

j

j

r r


  
, .N

k m N

d
Bi

dr


            (15) 

where  01 i kx m Fr e       is a phase change 

surface. Here 2 21

1 1

R
c T

 

   


- dimensionless criterion 

characterizing ratio of melting heat to heat capacity 

at the boundary of phase change, 
, , 0 /k m k m NBi Q R  - 

modified Biot number. At 
,k m NCQ   (external 

surface of the channel is doing heat exchange with 

surrounding medium) 
,k mBi Bi  and it becomes 

conventional Biot number determining the ratio of 

external and internal thermal resistances in a resting 

medium with a known intensity of heat transfer on a 

boundary. The modified Biot criterion characterizes 

a ratio of conductive and convective thermal 

resistance of boundary of an external surface of the 
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channel with the heat control system. As in the latter 

case 
,k mQ  can be practically any real number, 

,k mBi  

can also accept any valid values owing to what this 

dimensionless criterion is a measure of influence of 

the heat flux control system [2] on physical system.  

 

2.3.1 The parametric oscillations of the system 

Considering the case of negligibly small influence 

of convection on oscillations of the boundary of 

phase transition, from the last equation (12) follows 

the modified Bessel equation array 

                 
2 2

2

2 2

1n n
n n

d d m

dr r dr r

 
 
 

 
 

  ,        (16) 

where 2 2

n nk ib   , 2 2

0 /n nb R a , and n  is 

dimensionless amplitude of the temperature 

perturbation for n-th layer. Boundary conditions 

(13)-( 15) for this case transform to the form [9]:  

1( ) ( ),n n n ns s      1 1

' '( ) / ( ),n n n n n ns s              

          1(1) 1,      
,

' ( ) ( ),N N k m N Ns Bi s               (17) 

where 2, 1n N  , dash means derivative by r , 

2

1
n

n j

j

s r


  . The coefficients are assumed constant. 

General solution of the equations (16) is:  

               2 1 2n n m n n n m nc K r c I r     ,         (18) 

where ,m mK I - the modified Hankel and Bessel 

functions of m-th order, 
jc ( 1,2j N )- constants 

determined from substitution of (18) into (17). 

 

2.3.2 Integral correlations 

The following artificial approach is used to compute 

the Eigen values i   and get the properties of 

the Eigen functions without solving the dispersive 

equations. Multiplying the equations (16) by 
nr  , 

where 
n
 - complex conjugated function with 

n , 

and then integrating the equation obtained by r  

from 1ns   to ns  ( 2,n N ), with 1 1s  :  

1 1 1

2 22 22

2

'
n n n

n n n

s s s

n n n n

s s s

m
b rdr k rdr rdr

r
   

  

 
 

 
    

    

           1 1 1

' ' .n n n n n n n n n ns s s s s s    

            (19) 

The equation (19) thus obtained may have more 

solutions than (18) due to integration. But if this 

equation gives stability against small-amplitude 

perturbations (fading of oscillations with time) then 

the system described by (18) is stable too. Thus, the 

stability conditions obtained are necessary but not 

sufficient whereas the linear theory of perturbations 

gives only sufficient conditions of instability.  

Therefore, if the system at such approach is 

steady, it especially will be steady at the solution 

(18) with the subsequent definition of Eigen 

numbers of a task. It is only necessary to notice that 

stability in relation to low-amplitude perturbations 

(even strong stability in the above described sense) 

doesn't mean yet stability of physical system, which 

can be unstable in relation to perturbations of finite 

amplitude.  

 

2.3.3 Eigen values of interfacial oscillations 

Multiplying further the left and right parts of the 

equations (19) on n  and summing the equations 

obtained by all 2,n N , with account of the 

boundary conditions (17) yields 

        2

1 1 ,

2

' ( ) ( ) ,
1

1n N N N N k mq s s Bi
q

     
 

      (20) 

where 

1

2 222

1 2
2

' ,
n

n

sN

n n n

n s

m
q k rdr

r
  




  
    

  
 

          

 
1

2

2

2

21,
n

n

sN

n n n

n s

q b rdr 




    

Oscillations of the parameters are fading in time if a 

real part of the Eigen values   is positive. 

Therefore the necessary stability condition for a 

system with account of (20), (21) is written as  

        
2

1 1 1 ,

' / ,1 N N N N k mre q s s Bi     
 

       (22) 

where the equal-sign corresponds curve loss of 

stability (the neutral curve dividing areas of steady 

and unstable conditions of physical system). The 

sufficient condition of instability turns out by 

change of a sign of inequality (22) to the opposite 

one. As it is easily noted, from the necessary 

stability (against infinitesimal perturbations) 

condition (22), the temperature distribution in an 

equilibrium state and amplitude of perturbation of 

the interface of phase transition don't influence 

stability of the system in the considered model 

statement. Stability of the system, irrespective of 

amplitude of small perturbations, is defined only by 

physical parameters of a multilayered wall of the 

channel and a type of oscillations.  

The system is always steady at  1

'
1 0re   as in 

this case in the left part of an inequality (22) there is 

a negative value whereas in right part (see (21)) - 

positive. Physically this case corresponds to 
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decrease of amplitude of a temperature perturbation 

in the direction to an external surface of the channel 

(perturbations arise inside the channel and fade in a 

wall). Thus, it follows that increase of parametric 

oscillations of system in time (instability) can take 

place only in the presence of external perturbations. 

If reliable thermal insulation of the channel outside 

is possible, any parametric oscillations will fade 

eventually. If it isn't possible to exclude external 

perturbations, for research of stability it is necessary 

to solve the inequality (22), which allows defining 

values of coefficient of the feedback control system 

for heat flux [2] intended for suppression of those 

harmonicas promoting instability development.  

 

 

3 The mutual influence of system’s 

parameters and stability condition  
For electromagnetic suppression of perturbations the 

modified Biot number 
,k mBi  (for each mode with 

the wave numbers ,k m ) must be selected from the 

condition (22) that is always available because 

,k mBi  can get any real value. 

On the basis of the considered mathematical 

model it is possible to carry out analysis of stability 

of the cylindrical front of melt crystallization, which 

is in an equilibrium motionless state in the 

multilayered channel. So, for 3N   (the single-

layer channel) taking into account the above, from 

(17), (18) follows:  

  0/ ,1
j

j jс      1,6 ,j      
0 6 , 5 ,k mBi       

2 6 , 2 5,j j k m jBi      
1,mK A  

2 ,mI A  
1 1 1,z s  

   
2 1,z   

3 3 3,z s  
4 3 2 ,z s  

5 2 2 ,z s     (23) 

   ' ' ' '

1 1 2 6 2 1 6 ,A z A z       '

2 13,2 14 13 1,0 3 ,p p B z        

      ' ' '
22 1 1 6 2 1 6 ,A z A z         

 
1 1

2 ' '

2 5,2 6 1 1 1 6 2 ,5 2 10 2

0 0 1

,
g

p p q q g g q g

q g g

B z



   

       

  

                

  

 
1

2' '

2 9,2 10 11 6 2 ,5 2 1 5

0 1

,
q

p p q q q

q q

B z



  

    

 

   
0 ,pA A  

1
2 '

5,6 4 6 2 ,5 2

0 1

,
q

q q q

q q




  

  

 

    
2

3,4 0,1 5

1

,p

p

B z 


    

     
1

'

4 1 2 1 2 2 2

0

,1
q

p p q p q

q

A z A z    



      1,2 ,p   

1,pA B   
       2,11 1 2,1 2 1 1 1 2 2,1 .A z A z A z A z   

 

And then '

4 3u 
 is obtained from 

4 p  by replacing 

1 2,A A   for 
1 2,A A  and 

2 1 2 2,p q p qz z   
 for 

2 2 1, ,p q p qz z  
, 

where u=1,2,3, and '

3,6  is got from '

2,11  with 

substitution 
2,1 1,z z

 
on 

3,4 4,3,z z
 

and '

7,10,12  on '

2  

substituting 
1 6,5,5z z , 

2 5,6,5z z . Here for the purpose 

of compactness the conditional system of symbolic 

representation of formulas is entered: all indexes 

with commas mean that the considered expression 

breaks up to some expressions and indexes of the 

variables in them accept consecutively those values, 

which are listed in a line through a comma.  

 

 

3.1 Stability of the interface between solid 

and liquid phases 
The stability condition for physical system 

(including boundary of phase transition) (22) with 

account (23) and (18) allows obtaining for the case 

considered above the following condition:  

   
1

21
23 2 2

2

4 2 2 , 4 2 12
1 1 1

1
n

n

qs
p

n n p k m n p

n q ps

m
k Bi

r
  





   

  

 
    

 
  

                            2

2 q nB r rdr                  (24)

     
2

2

3 3 2 14 , 2 13 0 3 3 ,

1

1
p

p k m p k m

p

s Bi B s Bi    



                  

       
2

1

6 , 5 2 6 , 2 5 1 1

1

1
p

k m p k m p

p

re Bi Bi B    


 



 
     

 


2

6 , 5 ,k mBi    

where re , as before, means real part of complex 

value. From here it is visible that at increase of 

oscillations of system in time they can be 

suppressed by means of high-frequency 

electromagnetic fields and thermal control systems. 

For this purpose it is necessary to create the special 

thermal mode on an external surface of the channel 

and automatically support it. Really, supposed 

, 1k mBi , one can get from (24) the following  

   
1

21
23 2 2

2

4 2 2 22
1 1 1

1
n

n

qs
p

n n p q n

n q ps

m
k B r rdr

r
  





  

  

 
  

 
  

       
2

2

3 3 2 14 0 3 3 ,

1

1
p

p k m

p

s B s Bi  



           (25) 

   
2

2

6 6 2 6 1 1

1

.1/ 1
p

p

p

re B   



 
  

 
  

It is easy to notice that the condition (25) can be 

always satisfied with selection of the modified Biot 

2
' '

13 1

1

,q q

q

  



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number 
,k mBi  (for each pair ,k m ). Thus intensity of 

increase (fading) of oscillations in time is defined by 

value  . The criterion of a thermal homochromatic 

Fo  characterizes similar temporary pictures of 

oscillations’ development.  

 

3.1.1 Selection of the Biot number  

Selecting the parameter 
,k mBi  allow controlling the 

fading rate (by 
, ,k m k mBi Bi ) or increasing rate (by

, ,k m k mBi Bi ) of perturbation of the boundary phase 

transition. Here 
,k mBi - critical value of the Biot 

number 
,k mBi  for the given mode with the wave 

numbers ,k m . With choosing value 
,k mBi  individually 

for each pair , ,k m  the high resolution of the control 

system by modes’ of oscillations is available. 

In specific case of thermo-isolated channel, 

, 0k mBi  , therefore from (24) follows  

     
2

2

5 2 5 1 1

15

1
1

p

p

p

re B  
 



 
  

 
                  (26) 

   
1

21
23 2 2

2

4 2 1 22
1 1 1

1 ,
n

n

qs
p

n n p q n

n q ps

m
k B r rdr

r
  





  

  

 
   

 
  

 

where from it is seen that increase of the heat 

conductivity coefficients of the channel’s layer ( n ) 

and their thickness ( nr ) improves stability of the 

system, e.g. decreases the critical modified Biot 

number 
,k mBi . 

 

3.1.2 Short-wave perturbations of the system 

By 1k  
yields 

n k  , therefore from (26), (24), 

accounting asymptotic behaviors of the modified 

Bessel and Hankel functions, the following simple 

condition of the oscillations’ growing yields:  

3 32

1

2 3
22 22

1

,
n

n

s

ks ksksk

n n

n s

m dr
ke e e e

k r
   







    
 

where  2 1

2 1 2 1 3 2 3 2 1 216
ns s s s s s


        

 
 . It 

shows that short-wave fluctuations of boundary of 

phase transition can accrue in time only to a certain 

value k , at which excess it becomes impossible.  

Excitation of short-wave oscillations by means of 

external influences [9] in this case demands 

considerable expenses of energy, influence is not 

power here, but thermal one, low-frequency and a 

low-depending on the frequency of an external high-

frequency field [2]. Intensity of this influence is 

determined by dimensionless criterion 
,k mBi .  

3.1.3 Long-wave perturbations of the system 

By 1k  
put in (18) 0   (

nk   ), then from 

(26) follow neutral stability curve, which is 

boundary for transition of the system from stable to 

unstable state:  

        
23

2 2

1 2 212
1

,
2 1

2 0,5
m m

n n n

n

m k
s s s

m m
 



 
  

  
       (27) 

where is 1,2,3,...m , 
21 2 1/s s s . 

The oscillations in the system satisfying the 

condition (27) are spreading with a constant in time 

amplitude. Analyzing the condition (27), one can 

see that oscillations of constant amplitude by high 

values of the wave number m  (by  ) and thickness 

of the layers of channel wall nr  are impossible in 

reality because the value to the left in (27) 

substantially prevails the value to the right in this 

equation. The physical sense of this conclusion 

consists that short waves by azimuthally ( ) 

coordinate (twisting of a flow and all system with 

crystallization boundary) demand huge power 

expenses. Here m - integers as in the cylindrical 

channel the wave has to become closed by  . 

Influence of the accepted simplifications affects that 

the semi-infinite channel on an axis x is an 

impediment in wave spreading by   as far as the 

infinity "extinguishes" perturbations.  

By comparably small m  and r  determining by 

length of longitudinal waves the twisted oscillations 

(by coordinate  ) are available. In case of 

axisymmetrical oscillations ( 0m ) follows 
3

1 2

1

'( )1 0n

n

s 


    and thus fading of perturbations 

happens with time (the system is stable). 

Thus, it is revealed that short-wave longitudinal 

perturbations of system, irrespective of character of 

a twisting, fade in time if temperature of an external 

surface of the channel is maintained by a constant 

(reliable thermal insulation of the channel). The 

most real for practice long-wave perturbations of 

system parameters can have both the constant and 

increasing in time amplitude. It is determined by 

length of waves by coordinate  . 

Most often in practice it is necessary to suppress 

the growing fluctuations of parameters in 

technological processes. The considered model tasks 

show that it can be carried out, irrespective of 

physical conditions in which technological process 

is running, by a statement of specially selected 

mode of heat exchange on an external surface of the 

channel controlled by automatically operated high-

frequency electromagnetic field [2-4].  
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3.2 Influence of the melt’s convection on 

stability of the crystallization front 
In many metallurgical facilities the stability of the 

boundary of melt’s front crystallization is important 

as quality of technological process can significantly 

depend on it. The same task is important for solution 

of the problem for the channel walls’ and lining 

protection for metallurgical units against thermal 

and chemical destruction by means of an artificial 

garnissage [4,9]. 

However garnissage as a protecting method is 

effective only in case of possibility of automatic 

control of the boundaries of crystallization and 

suppression of their instability. Therefore it is 

necessary to conduct research of convection 

influence on stability of the front of crystallization 

and possibility of its stabilization by means of the 

directed external influence in case of instability. For 

this purpose we will analyze system of the 

differential equations (6), considering for simplicity 

gradients of density and heat conductivity small due 

to negligible small considered perturbations of 

temperature, which functions these physical 

characteristics are. This simplification is physically 

correct by weak dependence of density and heat 

conductivity on temperature.  

 

3.2.1 Model thin area of constant temperature 

If influence of the channel wall is neglected, then 

without account of convective terms in the energy 

conservation equation for melt, the earlier 

considered case takes a place. But the boundary 

conditions are different [4]: 

1 0( ) ;0s 
 

1 0( )1 ln ,s    12
2

0

( ) ;1
ln s


       (28)                           

21 2 1( ) ( ) ;1 1 R      
 2 , 2

' ( ) ( ),k ms Bi s  
 

where 
12 1 2/    by r =1. 

0 0/1s r R  .

 

Here for 

elimination of mathematical feature of the solution 

(18) at r =0 (temperature addresses in infinity if 

coefficient at 
mK  is nonzero, and otherwise 

temperature addresses in zero, as 0mI   only at m

=0), the area close to axis with a constant 

temperature is entered. This area models some kind 

of power source and its dimensionless radius is 

stated 0s  (some kind a core or a narrow channel in 

the main channel creating a surface of constant 

temperature 
0T ). 

As shown in [3], the value R
 for crystalline 

solids is rather big that gives the chance from the 

analysis of a condition of phase transition (28) to 

conclude the following. First, the Eigen values   of 

a task are small as otherwise on the boundary of 

phase transition there would have to be physically 

unreal big gradients of temperature. Secondly, as the 

right part of (28) contains a big value R
, then 

searching the solution in a form of series by a small 

parameter  , it is possible to compute   already in 

a zero approach from (28). From this follows that 

fluctuations of boundaries of phase transition are 

low-frequency (thermal processes have big 

characteristic time of perturbations’ development), 

whereas it is convenient to apply high-frequency 

electromagnetic fields [2,3] to their stabilization. 

If use the same artificial approach as applied 

before, it is available to show that the Eigen values 

of the task are real and positive. Thus, it yields:  

          

 

2 22
2 21 0

2
1 2 21 11 0

,
ln

ln

n

n

n n

c s

c c s R




 



  
             (29) 

where  

                        22

1 ,
b

n n n

a

c a rdr 
                  (30)

 
2

22 22

2 , 22
( ) .1

b

n n n k m

a

m
c k rdr s n Bi s

r
  

  
    

  

  
   

Here 2 2 2

1/ ,n na a a   
0 , 1a s b   by 1n   and 1,a b s   

by 2n  . Apparently from (29), (30), the cylindrical 

front of crystallization, unlike flat one [3], is steady 

in the considered model statement with existence of 

thin axial area of constant temperature (irrespective 

of the radius of this area, up to zero). 

 

3.2.2 Influence of convection on stability 

We estimate further an influence of convection at 

variable physical parameters of system. For this 

purpose put density function of temperature  T  

and expand it in a Taylor series in the vicinity of a 

point 
nT T , designating strokes derivatives by T :  

        21/ 2 ...,n n n n n n n n n n nT T T T             

where from seen that /n t   can be considered as a 

small value of higher order comparing to 
n , as far 

as  

      2 ...,
2

n n n n n
n n n n n n nT T T

t t t t

    
      

   
 

   
 

where    /
n

n n n T T
T T 


   . 

With account of the above and (11), the system 

(12) results in a linear approach   

1
1

1

,
1 dp

u
dr 




 1
1

1

,
mp

v
r

  1
1

1

,
kp

w



 1 1

1

du v
i m kw

dr r

 
  

 
        

  1 ,0
u

r
    

2 2
2

2 2

1n n
n n

d d m

dr r dr r

 
 
 

   
 

     (31)    
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1 1 1 1 1

2 2
.

2 1

n

T p p T Tn m
k

a r r r x  

  
    

  

   

   
 

Here  1 1 1 1, , ,u v w p - amplitudes of perturbations of 

velocity and pressure, 2 2 2/n nk a   . 

From the first four equations of the system (31) 

yields the modified Bessel equation for pressure 

perturbation:  
2 2

21 1
12 2

1
0,

d p dp m
k p

dr r dr r

 
   

 
  

which has the following solution  

           1 1 2 ,m mp AI kr A K kr                    (32) 

where A const . The boundary conditions (28) 

with account (32) and conditions of unperturbed 

distributed along the axis heat source (
0r s ) [4]: 

0 ,r s  0;v    1,r    1
21 11 ,

dp

dr
       (33)                 

which result in a system of boundary conditions for 

differential equations (31). From (32)-(33) is got:  

   1 0 2 0 0,m mAI ks A K ks      1 0 2 0 0,m mAI ks A K ks         

1 2 0,A A         0 0 0 0m m m mI ks K ks I ks K ks  . 

As the modified Bessel and Hankel functions 

have only positive values, and the first of them is 

monotonously increasing, the second - 

monotonously decreasing, then at all values of 

argument other than zero, this inequality is incorrect 

only at 0, 0k m  . However in the latter case, 

owing to properties of  ,m mI K , obviously 
1 2 0A A   

and 
1 0p  , as well. The system is steady against 

rather small perturbations of its parameters, i.e. 

parametric oscillations fade in time here.  

The boundary condition can be replaced with 

more general:  1 0 0u s  . Two other velocity 

components of the unperturbed melt can be other 

than zero (for example, in a case when the entered 

axial area of constant temperature isn't motionless). 

Then unlike considered above it turns out: 

   1 0 2 0 0,m mAI ks A K ks  
     2

1 2 ,m mAI k A K k     

where is  211      . As shown above,   is 

small. The value 
 
is small too for small-amplitude 

perturbations, therefore in a linear approach value 
2

  can be neglected, where from: 

   1 0 2 0 0,m mAI ks A K ks  
    1 2 0m mAI k A K k   . 

Investigation of the algebraic equation array 

(AEA) of two equations shows that its solution is 

non-trivial in case 
0 1s   or 0k  . But both cases 

are physically unreal because by 
0 1s   all channel is 

filled with a melt of constant temperature 
0T T , 

and by 0k   it is 
1 0p  , e.g. the system is 

unperturbed (stability).  

 

 

4 Conclusion 
The model for solidification boundary interface has 

been developed. An analysis shown that the front of 

melt crystallization under neglect influence of the 

channel wall (the metallurgical unit) is steady 

against rather low-amplitude perturbations of 

parameters of physical system if only in an 

equilibrium state a melt was immovable.  
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