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Abstract: - Multirotor Unmanned Aerial Vehicles (UAV) are used in many applications such as surveillance, 
inspection operations, and disaster site observations. Mathematical model of a multirotor UAV is indispensable in 

movement simulation and later control design. Mathematical model is, at the same time, the first step in 
comprehending the mathematical principles and physical laws which are applied to the multirotor system. In this paper 
we derived movement matrix for multirotor UAV and analyse multirotor configuration to force and torque distribution 
in space. Because of different requirements for payload, agility, power consumption, manipulability, it is necessary to 
know which multirotor configuration is optimal for particular demand. Analysis results of multirotor configuration are 
graphically shown by force and torque ellipsoids. By changing the tilt angle, multirotor UAV is able to achieve full 
controllability over its 6 DOF body pose in space, respectively, it can decouple position from orientation. 
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1 Introduction 
Multirotor type of Unmanned Aerial Vehicles 

(UAV) are expected to have wide range of 
applications because they have capability of 
collecting the necessary information from the sky. 
Because of unique ability to carry out vertical take-
off and landing (VTOL), stationary and low speed 

flight, these platforms are studied and designed, 
considering they are more and more applicable. 
Challenges for this type of UAV and opportunities to 
research are described [1]. 

UAVs can support disaster site observations or 
search and rescue missions. There are several solutions 
required for this scenarios. Some studies propose new 

design [2, 3] and new model [4]. For better design and 
model, also for control design, it is mandatory to 
discern physical parameters of proposed concept. 
Some papers show experimental identification of 

physical parameters [5,6]. For manipulation with 
objects there are several groups that investigate novel 
concepts of actuation and multirotor configuration. 
They propose new prototypes [7,8]. During the 

inspection operations, aircrafts are very often 
struggling with wind gusts or other environmental 
disturbances. There have been some studies for using 
nonlinear control algorithms for trajectory tracking 
with disturbance rejection. [9,10]. 

Multirotor as an aircraft has six degrees of 
freedom – 6 DOF. Only moving parts on multirotor 

are propulsor propellers which are fixed in a 
propulsors axis. Multirotor frame is assumed to be 
symmetric and rigid. Direct influence on the 
multirotor movement is induced by variation of  each 
motor’s RPM. To achieve stable flight, it is necessary 
to combine several high accuracy sensors with fast 
and robust control algorithm.

 

Fig. 1 Typical flat multirotor configurations (PixHawkTM motor layout)
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2 Multirotor Mathematical Model 
Mathematical model describes multirotor 

movement and behaviour with the respect to the input 
values of the model and external influences on 
multirotor. Mathematical model can be considered as 
a function that is mapping inputs on outputs. By using 
mathematical model, it is possible to predict position 
and attitude of multirotor by knowing the angular 

velocities of propellers, i.e. it enables computer 
simulation of multirotor behaviour in different 
conditions. 

 

Fig. 2 Inputs and outputs of multirotor mathematical 
model  

 

2.1 Rigid Body Kinematics 
It is necessary to define two coordinate systems: 

 Earth fixed frame (E-frame, ℱ𝐸) 

 Body fixed frame (B-frame, ℱ𝐵) 

Some multirotor physical properties are measured in 

ℱ𝐸, while some properties are measured in ℱ𝐵. 

ℱ𝐸 is the inertial right-handed coordinate system 

where positive direction of 𝑍𝐸  axis is in the direction 

normal to the earth ground level. Multirotor position 

𝛏 = [𝑋 𝑌 𝑍]T and attitude 𝛈 = [𝜙 𝜃 𝜓]T are 

defined in ℱ𝐸. Roll-pitch-yaw convention order is 

applied. 

ℱ𝐵 is fixed on multirotor body. Positive direction 

of the 𝑋𝐵 is pointing with red arrow (Fig. 2). ℱ𝐵 is 

also right-handed coordinate system. Assumption is 

that the origin of ℱ𝐵 coincides with the center of 

gravity (COG) of the multirotor. Linear velocities 𝐯B, 

angular velocities 𝛚B, forces 𝐟B and torques 𝛕B are 

defined in ℱ𝐵. 

Motion equations are more suitable to formulate 

with the respect to the ℱ𝐵 for several reasons: system 
inertia matrix is time-invariant, equations 
simplification because of multirotor frame symmetry, 

sensors measurements are easily converted to ℱ𝐵 and 
control variables equations simplification. 

Kinematics of a rigid body with 6 DOF is given 
with: 

�̇� = 𝐉𝛎, (1) 

where �̇� = [�̇� �̇�]T is generalized velocity vector in 

ℱ𝐸, 𝛎 = [𝐯𝐁 𝛚𝐁]T is generalized velocity vector in 

ℱ𝐵, and 𝐉 is generalized rotation and transformation 

matrix. 

𝐉 = [
𝐑 𝟎3×3

𝟎3×3 𝐓
] (2) 

𝐑 is the rotation matrix which maps linear velocity 
vector from one coordinate system to another 

𝐑 = [

C𝜓C𝜃 C𝜓S𝜃S𝜙 − S𝜓C𝜙 C𝜓S𝜃𝐶𝜙 + S𝜓S𝜙
S𝜓C𝜃 S𝜓S𝜃S𝜙 + C𝜓C𝜙 S𝜓S𝜃C𝜙 − C𝜓S𝜙
−S𝜃 C𝜃S𝜙 C𝜃C𝜙

] (3) 

where C𝑖 = cos(𝑖) , S𝑗 = sin(𝑗). 
Because of the need to transform measured values 
from one coordinate system to another, the rotation 
matrix is introduced. Matrix 𝐓 is the transformation 

matrix that transfers angular velocities from ℱ𝐵 to 

ℱ𝐸. Since hybrid coordinate system is used for 
deriving the dynamic model, the matrix T is not used. 
Instead, velocity vector in hybrid coordinate frame 

(ℱ𝐻) is defined as 𝛇 = [�̇� 𝛚B]T. 

 

2.2 Rigid Body Dynamics 
Multirotor dynamics is described by differential 

equations that were derived by using the Newton-
Euler method. Dynamics of a rigid 6 DOF body takes 
into consideration the mass m and the inertia of the 
body I. By applying the assumption that the 
multirotor frame has symmetrical structure, i.e. the 

principal inertia axes coincides with the ℱ𝐵 
coordinate axes, inertia matrix becomes the diagonal 
matrix. 

𝐌B�̇� + 𝐂B(𝛎)𝛎 = 𝛌, (4) 

where �̇� is the generalized acceleration vector, 𝐌B is 

the system inertia matrix, 𝐂B(𝛎) is the Coriolis-

centripetal matrix, all with the respect to the ℱ𝐵. 

Generalized force vector 𝛌 = [𝐟B 𝛕B]T can be 
divided into three components; gravitational vector 
𝐠B(𝛆), gyroscopic torque vector 𝐨B(𝛎)𝛚 and 

movement vector 𝐮B(𝛚). 

𝛌 = 𝐠B(𝛆) + 𝐨B(𝛎)𝛚+ 𝐄B𝛚
2, (5) 

Gravitational vector only affects the linear 
components of the model, while gyroscopic torque 

vector only affects angular components of the model. 
Movement vector 𝐮B(𝛚) is represented by the 
product of movement matrix 𝐄B and the vector of the 

squared angular velocities of the propellers 𝛚2. 

Dynamics of a rigid body with 6 DOF is given with: 
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�̇� = 𝐌B
−1[−𝐂B(𝛎)𝛎 + 𝐠B(𝛏) + 𝐨B(𝛎)𝛚+ 𝐄B𝛚

2] (6) 

what, basically, is a matrix formulation of Newton’s 
second law of motion. 

Generalized acceleration vector with respect to ℱ𝐻 

can be calculated as 

�̇� = 𝐌H
−1[−𝐂H(𝛇)𝛇 + 𝐠H + 𝐨H(𝛇)𝛚 + 𝐄𝛚2] (7) 

 

2.3 Force/Torque Mapping 
Based on multirotor configuration and propulsion 

geometric arrangement, a movement matrix can be 
derived. At first, it is necessary to provide kinematic 
analysis of the connection between force/torque 
actuation and propulsion configuration. 

 

Fig. 3 Multirotor configuration – Hexa X 

Multirotor configuration consists of arbitrary 
number of propulsions (PN). Each propulsion 
generates an aerodynamic force which consists of 
thrust force and drag moment. 

Propulsion position 𝝃𝑃𝑖 is defined as 

𝛏P𝑖 = [
sinχ𝑖
−cosχ𝑖

0
] · 𝑙 

(8) 

Where χ𝑖 is the i-th propulsion position relative to 

the ℱ𝐵 (Fig. 3), and 𝑙 is the distance from rotor to 

COG. 
Propulsion orientation 𝜼𝑃𝑖  is defined as: 

𝛈P𝑖 = 𝐂𝐑 · [
sinχ𝑖 · sin𝛾
−cosχ𝑖 · sin𝛾

cos𝛾
] 

(9) 

Where 𝛾 represents propulsion tilt angle. If 𝛾 = 0, 

then we have a common “flat” multirotor 

configuration which means that we have under-
actuated system. 
CR is configuration rotation matrix and it describes 

a tilt angle signum with respect to XY plane in ℱ𝐵 as 

shown in Fig. 4. 

 

Fig. 4 Multirotor configuration rotation 

Fig. 4a) shows a “flat” configuration. In b) case 
configuration rotation matrix is 

𝐂𝐑 = [
1 0 0
0 1 0
0 0 1

] 
(10) 

In c) case configuration rotation matrix is 

𝐂𝐑 = [
−1 0 0
0 −1 0
0 0 1

] 
(11) 

After kinematic analysis of multirotor 

configuration in ℱ𝐵 is presented, analysis of 

propulsion system dynamics can be derived. Forces 
and torques that are generated by propulsion, directly 
effect on the multirotor position and orientation in 
space. 

Each propulsion generates force vector which can 
be calculated by the following equation 

𝐟𝑖 = (𝛈P𝑖 · 𝑏)𝜔𝑖
2 

(12) 

where 𝜔𝑖 is angular speed of the ith rotor, and 𝑏 is the 

thrust coefficient [𝑁𝑠2]. 

Each propulsion also generates torque vector 
which can be calculated by the following equation 

𝛕𝑖 = (𝛏P𝑖 × 𝛈P𝑖 · 𝑏 + 𝑃𝑅 · 𝛈P𝑖 · 𝑑)𝜔𝑖
2 

(13) 

where 𝑑 is the drag coefficient [𝑁𝑚𝑠2], and 𝑃𝑅 is the 

signum of propulsion rotation. 

𝑃𝑅 = {
1𝑖𝑓𝑖 = 𝐶𝑊

−1𝑖𝑓𝑖 = 𝐶𝐶𝑊
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From the static thrust test, constants 𝑏 and 𝑑 can be 

obtained. They depend on the propeller radius, thrust 
and power factor, and air density. 

The generalized force vector 𝐟B = [𝐹𝑋 𝐹𝑌 𝐹𝑍]T is 

defined as 

𝐟B =∑𝐟𝑖

𝑃𝑁

𝑖=1

 
(14) 

The same way torque vector 𝛕B = [𝜏𝑥 𝜏𝑦 𝜏𝑧]T is 

defined as 

𝛕B =∑𝛕𝑖

𝑃𝑁

𝑖=1

 
(15) 

From equations 14 and 15, a movement matrix can be 
derived. The tilt angle decides how much force we 

can put into [𝜏𝑥 𝜏𝑦 𝐹𝑍]T or into [𝐹𝑋 𝐹𝑌 𝜏𝑧]T. 
Considering aerodynamic effects, it follows that 
forces and moments are proportional to the squared 
angular velocities of the propellers. Movement vector 

𝐮B(𝛚) = [𝐟B 𝛕B]T is represented by the product of 
movement matrix 𝐄B and the vector of the squared 

angular velocities of the propellers 𝛚2. As shown in 
Fig. 2, movement vector is input in rigid body 
dynamic model. 

𝐮B(𝜔) = 𝐄B𝛚
2 

(16) 

For the control design and implementation on an 

aircraft prototype, it is necessary to calculate the 
angular velocity for each individual propulsion 

𝛚2 = 𝐄B
−1𝐮B 

(17) 

 

3 Tilt angle analysis  
We provide analysis for hexarotor X 

configuration as shown in Fig. 3 with configuration 
rotation matrix as shown in Fig. 3c. Tilt angles are 

presented in Table 1. The tilt angle indicates how 

much force we can put into [𝜏𝑥 𝜏𝑦 𝐹𝑍]T or into 

[𝐹𝑋 𝐹𝑌 𝜏𝑧]T. 

Table 1 

Tilt angle 𝛾 [°] 

0 2 4 6 8 
10 12 15 18 20 

Clearly at 𝛾 = 0°, there are no forces in XY plane in 

ℱ𝐵 and torque around Z axis is relatively small, so 
there is no ability to control 𝐹𝑋 and 𝐹𝑌 directly. 

Tilt angle analysis is especially important for further 
study of agility, power consumption, component 
selection, effects of platform size, disturbance 

rejection, etc. 

 
Fig. 5 Maximum available force map values at 

different tilt angles 

It can be seen from Fig. 5 that the multirotor 
maximum available force map values depend on tilt 

angle. Force maps also depend on chosen motors and 
multirotor dimensions. As the tilt angle increases, the 
force along the Z axis falls and it is necessary to 
increase the angular velocities of propulsion in order 
to keep a hover. Opposite of Z axis, force along the X 
and Y axis grows. 

 
Fig. 6 Maximum available torque map values at 

different tilt angles 
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Fig. 6 shows the multirotor maximum available 
torque map values depending on tilt angle. As the tilt 
angle increases, torques slightly decreases. 

 

Fig. 7 Force ellipsoids for different tilt angles 

Fig. 7 shows the force ellipsoids which depends 
on the tilt angle (Table 1). The first image represents 
the ellipsoid for tilt angle 2° and the last is for 20°. 
As it can be seen, with increasing tilt angle, we get a 
control over 𝐹𝑋 and 𝐹𝑌. Hence, we have fully actuated 

system. 

 

Fig. 8 Torque ellipsoid 

4 Simulation results  
The behaviour of the outputs of the mathematical 

model is dependent on the input values. Even though 
the mathematical model deals with angular velocities 
as one of the variables, the input values are chosen to 

be the RPM of the propellers (𝑛 =
30𝜔

𝜋
) because that 

is the more natural way of setting the propeller 
rotation. The outputs of the model are multirotor 
position and orientation. Based on the estimated 

physical parameters, which are needed for 
calculating the output values, input values can be 
given for which the multirotor will behave in the 
expected way. 

Described movement matrix has been validated 
with the simulation results in related work [11]. 

Table 2 Mathematical model input parameters 

t 
RPM [rev/min] 

M1 M2 M3 M4 M5 M6 

0-

5sec 
3480 3480 3480 3480 3480 3480 

5-

10sec 
3480 3480 3479 3481 3479 3481 

 
The state of constant altitude is wanted to be 
achieved. After 5th second, forward movement is 
wanted. As shown in Fig. 9, for the first 5 seconds 
multirotor maintain constant altitude. After 5th 

second, multirotor is going forward with drop in 
height. 

 

Fig. 9 Multirotor position during simulation 

5 Conclusion 
In this paper the complexity of the multirotor 

mathematical model derivation is shown. Dynamic 
model consists of rigid body dynamics model and 
movement matrix. The key contribution of this paper 
is derivation of the movement matrix 𝐄B for a class 

of multirotors and to analyse multirotor configuration 

Denis Kotarski et al.
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 237 Volume 1, 2016



influence on movement matrix. This matrix is used 
for mapping the angular velocity to force/torque. As 
it can be seen, by changing tilt angle, full 
controllability of multirotor UAV can be achieved 
over its 6 DOF body pose in space. It means that roll 

angle can be decupled from the Y-translation and the 
pitch angle from the X-translation.  

By running several simulations with various tilt 
angle, force and torque ellipsoids can be obtained as 
shown in Fig. 7 and Fig. 8. These ellipsoids represent 
available force in space as a function of tilt angle. As 
it can be seen, the available force in XY plane 

increases as tilt angle increase. 
Further work will include control design for 

various configuration with stability analysis and 
mathematical model improvements. 
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