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Abstract: - Wireless communication system working over Gamma shadowed Nakagami-m multipath fading 
channel in the presence of cochannel interference exposed to Nakagami-m short term fading and Gamma long 
term fading is investigated in this work. In interference limited channel, the ratio of desired signal envelope and 
interference is important performance measure. For considered model signal to interference ratio can be 
calculated as the ratio of two products of square rooted Gamma random variable and Nakagami-m random 
variable. In this paper, the closed form expression for probability density function (PDF), moments and 
moment generating function (MGF) of output SIR will be calculated. The influences of Nakagami-m short term 
fading severity parameter and Gamma long term fading severity parameter on moments of the first and the 
second order will be discussed. 
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1 Introduction 
In interference limited environments, cochannel 
interference power is significantly higher than 
Gaussian noise power, so Gaussian noise effects on 
the outage probability and bit error probability of 
wireless communication system can be ignored [1]. 
In these channels, the ratio of desired signal 
envelope and cochannel interference envelope is 
important performance measure. Refraction, 
diffraction, reflection and scattering of 
electromagnetic waves cause small scale fading 
resulting in signal envelope variation. With the other 
hand, large obstacles between transmitter and 
receiver cause shadowing which resulting in signal 
envelope average power variation. Desired signal 
and cochannel interference are subjected to long 
term fading and short term fading. 

 A plurality of distribution is used to describe 
signal envelope variation in short term fading 
channels and to describe signal envelope average 
power variation in long term fading channels [2]. 

Nakagami-m statistical model describes signal 
envelope in non line of sight (LOS), linear multipath 
fading channel where signal propagates with one, 
two or more clusters [3]. Nakagami-m distribution 

has severity parameter m and signal envelope 
average power Ω. The parameter m is is greater than 
0.5. When parameter m is equal to one, Nakagami-m 
distribution reduces to Rayleigh distribution; when 
parameter m tends to 0.5, Nakagami-m statistical 
model turn into one sided Gaussian statistical model 
and when parameter m goes to infinity, Nakagami-m 
multipath fading channel becomes no fading 
channel. 

Signal envelope average variation in long term 
fading channels can be described by using log-
normal distribution or Gamma distribution. When 
signal envelope is modeled with Gamma 
distribution, probability density function and 
cumulative distribution function of output signal to 
interference ratio can be obtained as the closed form 
expressions. 

There are more works in aveilable technical 
literature, considering performance of wireless 
communication system in the presence of short term 
fading and cochannel interference and performance 
of wireless systems operating over shadowed short 
term fading environments. In [4], wireless 
communication system working over Weibull 
multipath channel with SC receiver in the presence 
of cochannel interference affected to Weibull 
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multipath fading is evaluated. Probability density 
function, cumulative distribution function, 
moments, outage probability and bit error 
probability for several modulation schemes are 
calculated in the paper.   

Outage performance of multi-branch SC receiver 
over correlated Weibull channel in the presence  of 
correlated Rayleigh co-channel interference is 
determined in [5]. 

Macrodiversity system including macrodiversity 
SC receiver and two microdiversity SC receivers is 
considered in [6]. Received signal experiences long 
term fading and short term fading. Microdiversity 
SC receivers reduce Rayleigh fading effects on 
system performance and macrodiversity SC 
receivers mitigate Gamma shadowing effects on 
system performance. The closed form expressions 
for level crossing rate of system output signals 
envelopes are calculated.  

Macrodiversity system with macrodiversity SC 
receiver and two maximal ratio combining (MRC) 
receivers operating over Gamma shadowed Rician 
multipath fading channel is analyzed in [7]. Average 
level crossing rate and average fade duration are 
evaluated.  

In [8], the authors presented novel exact 
expressions and accurate closed-form 
approximations for the level crossing rate (LCR) 
and the average fade duration (AFD) of the double 
Nakagami-m random process. These results are 
useful for studying the second order statistics of 
multiple input multiple output (MIMO) keyhole 
fading channels. Numerical and computer 
simulation examples validate the accuracy of the 
presented mathematical analysis and show the 
tightness of the proposed approximations. 

The problems of products and ratios of random 
variables with different distributions, as well as their 
application in wireless telecommunication systems 
are considered in [9]-[12]. The application in 
performance analysis of multi-hop relaying 
communications over fading channels is presented 
in [9] and [10]. Statistical characteristic of ratio of 
product of two random Rayleigh variables and 
Rayleigh random variable and its application in 
performance analysis of wireless communication 
systems are derived in [11], and statistics for ratios 
of Rayleigh, Rician, Nakagami-𝑚𝑚, and Weibull 
distributed random variables is given in [12]. 

In this work, wireless communication system 
functioning over Gamma shadowed Nakagami-m 
multipath fading in the presence of cochannel 
interference subjected to Nakagami-m short term 
fading is examined. Signal envelope to cochannel 
interference envelope ratio of considered wireless 

system can be calculated as ratio of two products of 
square rooted Gamma random variable and 
Nakagami-m random variable. In this paper, 
probability density function and moments of signal 
to interference ratio are derived. The influence of 
fading channel parameters on system performance is 
analyzed. 
 
 
2 Performance of Output Signal to 
Interference Ratio 
 
2.1 Probability Density Function of Output 
Signal to Interference Ratio 
Signal to interference ratio at the output of wireless 
communication system is: 

x yw
z t
⋅

=
⋅

.   (1) 

Then, random variable x is: 
wztx

y
= .                     (2) 

Random variable x is also: 
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where x1 is Gamma random variable: 
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with a shape parameter c1 and a scale parameter β1. 
Probability density function of x is: 
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Random variable y has Nakagami-m distribution 
[13]: 
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whereas ᴦ(.) is the Gamma function, Ω1 is the 
average signal power: 

2

1
1

y
m

Ω =  

and m1 represents the inverse normalized variance 
y2, which must satisfy 1 1/ 2m ≥ , describing the 
fading severity.  

Random variable z is square root of Gamma 
variable. PDF of z is: 
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Nakagami-m random variable t has Nakagami-m 
distribution [13]:  
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Probability density function of w is therefore: 
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Let us introduce integral J1 as:  
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Similarly, let is integral J2: 
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Now, it is valid: 
2 2
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The derivatives are: 
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From expression (12) we have: 
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After substituting, the expression for J2 
becomes: 
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By using the formula [14]: 
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precursory expression ensues: 
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After substituting the expression for J2 in the 
expression for the PDF of w, it becomes: 
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2.2 Moments of Output Signal to 
Interference Ratio 
Moment of n-th order of ratio of two products of 
square rooted Gamma random variable and 
Nakagami-m random variable is:  
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By using replacement: 
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After substituting, the expression for mn 
becomes: 
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Now, by using the formula: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1
2 1 , , , s a s b s c s
F a b c z z

a b c s
− − Γ + Γ + Γ Γ −

− =
Γ Γ Γ +

, 

previous expression will be: 

( ) ( )1 2
1 21 2

2 2
n c cm

c cβ β
= ⋅ ⋅

Γ Γ
 

( ) ( ) ( )
1 2

1 2 1 21 2
1 2 1 2

1 1 2 2

2 2 1
8

m m
c m c mm m c m

m m
β + +   

⋅ ⋅ Γ + Ω ⋅   Γ Ω Γ Ω   
 

( )
1 2

2 2

1 2

2
1 22

2

m c
c m

m cm c c
m
β +

−
+

⋅ Γ + ⋅  

( ) ( )
( )

121 2 1 2 1 2

1 2 1 2 1 2

1
2

n mm c m m m
m m c c m β

+Γ + Γ +  Ω
⋅  

Γ + + +  
 

( )

( ) ( )

1 2 1 1 2 1 1 2 1 2 1

1 2 1 2 1 2 1 2 1

2 2 2

2

n n nm c m m m m m m c c m

nm c m m m m c c m

     Γ + − − Γ + − − Γ + + + Γ +     
     ⋅

 Γ + Γ + Γ + + + − − 
 

 

(22) 
 

2.3 Moment generating function of 
Output Signal to Interference Ratio 
Moment generating function (MGF) of output SIR 
is: 
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Now, let us introduce the integral J3: 
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By dint of exchange introduced by formulas 
(19) and (20): 
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3 Numerical Results  
The first moment of w (mean value w ) is given in 
the first four figures, and the second moment of w 
(squared average value 2w  ) in the second four 
figures. 

In Fig. 1, the main value w  versus average 
signal power Ω1 for Gamma long scale parameters 
β1=β2=1, Nakagami-m fading severity parameters 
m1=m2=2, Gamma fading severity parameters 
c1=c2=2 and variable interference signal power Ω2 is 
presented. The first moment of w versus interference 
signal power Ω2 for β1= β2=1, m1= m2=2, c1= c2=2 
and changeable average desired signal power Ω1 is 
shown in Fig. 2. 

It is obvious from Fig. 1 that mean value w  
increases with increasing of average signal power 
Ω1. The mean value is bigger for smaller values of 
average interference signal power Ω2 for the same 
other parameters. One can see from Fig. 2 that the 
first moment of w decreases with enlarging of 
average interference power. This decline is more 
pronounced for small values of Ω2. 

In Fig. 3 and 4, the mean value w  versus Gamma 
long term scale parameters β1 and β2, respectively, is 
plotted. In Fig. 3, the graph is drawn for m1=m2=2, 
c1=c2=2 and variable average signal power Ω1, 
average interference power Ω2 and scale parameter 
β2.  It is possible to see from this figure that the first 
moment of w rises with enlargement of Gamma long 
term fading parameter β1. This is more expressed for 
bigger values of Gamma large scale fading 
parameter β2. 
 

 
Fig. 1. Mean value w  versus average desired signal 

power Ω1 for Gamma long scale parameters 
β1=β2=1,   Nakagami-m fading severity parameters 

m1= m2=2, Gamma  fading severity parameters   
c1=c2=2 and variable average interference signal 

power Ω2. 

F
Fig.2. The first moment of w versus average 

interference power Ω2 for β1= β2=1, m1= m2=2,    
c1= c2=2 and changeable average desired signal 

power Ω1. 

  
Fig.3. Mean value w  versus Gamma long term scale 
parameter β1 for m1= m2=2, c1= c2=2 and variable 

average signal power Ω1, average interference 
power Ω2 and scale parameter β2. 
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From Fig. 4, it is visible that the first moment of 
w abates with an increase of Gamma long term 
parameter β2. This is more expressed for smaller 
values of Gamma large scale fading parameter β2. 
The mean value is bigger for bigger values of Ω1 
and smaller for larger value of Ω2. 

The second moment of w is introduced in Fig. 5 
versus average signal power Ω1 for m1=m2=2, 
c1=c2=2 and variable average interference power Ω2 
and scale parameters β1=β2=1. The squared average 
value 2w  is presented in Fig. 6 versus interference 
power Ω2 for m1=m2=2, c1=c2=2 and variable 
average interference signal power Ω2 and scale 
parameters β1= β2=1. 

It can be seen from these two figures that 
squared average value grows with rise of signal 
power and reduction of interference power. The 
least values are for bigger interference power Ω2 
and small signal power Ω1. 

 
Fig. 4. The first moment of w versus scale parameter 
β2 for m1=m2=2, c1= c2=2 and scale parameter β1=1 
and variable average signal power Ω1 and average 

interference power Ω2. 

 
Fig.5. The squared average value 2w  versus average 
signal power Ω1 for m1=m2=2, c1=c2=2 and variable 
average interference power Ω2 and scale parameters 

β1=β2=1. 

 
Fig.6. The second moment of w versus average 

interference power Ω2 with m1= m2=2,       c1= c2=2 
and variable scale parameters β1 and β2    as well as 

average signal power Ω1. 

 
Fig. 7. The second moment of w versus scale 

parameter β1 for changeable average signal power 
Ω1, interference signal power Ω2, and scale 

parameter β2, with m1= m2=2, c1= c2=2. 

 
Fig.8. The second moment of w versus scale 

parameter β2 for some values of average signal 
power Ω1 and average interference signal power Ω2, 

with m1= m2=2, c1= c2=2 and variable scale 
parameter β1. 
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The second moment of w versus scale parameter 
β1 for changeable average signal power Ω1, 
interference power Ω2, and scale parameter β2, with 
m1= m2=2, c1= c2=2, is shown in Fig. 7. The 
squared average value 2w  is plotted in Fig. 8 versus 
scale parameter β2 for different values of average 
signal power Ω1 and average interference power Ω2, 
with m1=m2=2, c1=c2=2 and variable scale 
parameter β1. 

If scale parameter β1 aggrandizes, the second 
moment of w also increases. The second moment 
declines with increment of scale parameter β2. One 
can see from Figs. 7 and 8 that the squared average 
value has growth especially for big scale parameters 
β1 for smaller β2. The changes are more prominent 
for low values of β2. 
 
 
4 Conclusion 
Wireless communication system operating over 
shadowed short term fading channel in the presence 
of cochannel interference affected to shadowed 
multipath fading is considered. Desired signal 
experiences Gamma long term fading and 
Nakagami-m short term fading and cochannel 
interference subjected to Gamma shadowed 
Nakagami-m multipath fading. In proposed model, 
desired signal envelope can be represented as 
product of square root of Gamma random variable 
and Nakagami-m random variable. Also, 
interference envelope can be represented as product 
of square root of Gamma random variable and 
Nakagami-m random variable. Signal to interference 
ratio can be calculated as the ratio of two products 
of square rooted Gamma random variable and 
Nakagami-m random variable.  

For parameter m=1, Gamma shadowed 
Nakagami-m multipath fading channel becomes 
Gamma shadowed Rayleigh multipath fading 
channel. When parameter m goes to infinity, 
Gamma shadowed Nakagami-m multipath fading 
channel ensues pure Gamma long term fading 
channel. When Gamma shadowing severity 
parameter tends to be infinite, Gamma shadowed 
Nakagami-m multipath fading channel turns into 
pure Nakagami-m multipath fading channel. In a 
situation where both, Nakagami-m parameter m and 
Gamma shadowing severity parameter tend to 
infinity, Gamma shadowed Nakagami-m multipath 
fading channel is no fading channel. 

In this paper, probability density function, 
moments and moment generating function of signal 
to interference ratio at the output of considered 
wireless communication system are calculated. By 

using these formulas, the outage probability and bit 
error probability can be calculated.  

The first moment and the second moment 
increase as Nakagami-m parameter and Gamma 
long term fading parameter increase. The system 
performance are better for higher values of 
moments.  
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