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 Abstract: - The notion of the algebraic sets was proved to be fundamental for the development of the Algebraic 
Geometry. In the paper at hands we study irreducible algebraic sets (varieties) with differentially simple 
coordinate rings. Starting from the fact that the coordinate ring of a singular variety does not admit simple 
derivations, we turn our attention to smooth varieties proving that the coordinate rings of the circle of the 
cylinder and of the real torus are differentially simple rings. However, this is not true for the coordinate rings of 
all smooth varieties; for example the coordinate ring of the real sphere does not admit simple derivations.       
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1. Introduction 
All he rings considered in this paper are 
commutative with identity and all the fields are of 
characteristic zero, while a local ring is understood 
to be a Noetherian ring with a unique maximal 
ideal. For general facts on commutative ring theory 
we refer to the books [1-3]. 

A prime ideal P of a ring R is said to be of height 
n, where n is an integer, n≥ 1, if there exists a chain 
of distinct prime ideals decreasing from P of the 
form P⊃ P1⊃ P2⊃ …⊃ Pn  and no longer one. We 
write then ht P = n 

 Further, the Krull dimension of R, denoted by dim 
R, is defined to be the supremum of heights of all 
maximal ideals of R. Note that, if R is a finitely 
generated algebra over a field K, then all its 
maximal ideals have the same height. Therefore, if 
M is a maximal ideal of R, then dim R = ht M. 

 A local ring is said to be regular if its dimension is 
equal to the minimal number of generators, say 
V(M), of its unique maximal ideal M. Generalizing, 
a ring R is said to be regular, if all its localizations 
RM with respect to a maximal ideal M are regular 
local rings.  

In the paper at hands we study smooth varieties 

over a field K, whose coordinate rings admit simple 
K-derivations. The rest of the paper is organized as 
follows: Section II contains a brief account about 
the differential simplicity of a ring, which is needed 
for the purposes of the present work. In Section III 
some ideas from Algebraic Geometry are exposed, 
which are useful for the better understanding of the 
paper. Finally, Section IV contains the main 
paper’s results concerning the differential 
simplicity of the coordinate rings of a circle, of a 
cylinder and of the real torus. 

2. Differentially Simple Rings 
Let R be a ring and let d be a derivation of R. Then 
an ideal I of R is called a d-ideal if d (I)⊆ I, and R 
is called a d-simple ring if it has no non zero, 
proper d-ideals. In the last case we say that d is a 
simple derivation of R.  

For reasons of brevity we shall write dI instead of d 
(I). 

 A d-simple ring R contains the field F = {x∈R: dx 
= 0} and therefore it is either of characteristic zero, 
or of a prime number p.  

In earlier works [4, 5] we have studied the d-
simplicity of a commutative ring. If R is a d-simple 
ring of characteristic p, then things are quite 
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simple; namely R is a 0-dimensional quasi-local 
ring and therefore, if R is a domain, then R is a 
field  [5; Theorem 1.5].  

 On the contrary, if R is of characteristic zero and  d 
is a derivation of R, then no general criterion is 
known to decide whether or not R is a d-simple 
ring, unless if R is a  one-dimensional (as a ring) 
finitely generated algebra of the form K[y1, y2,…, 
yn] over a field K  . In fact, in this case R is a d-
simple ring, if, and only if, R =(dy1, dy2,…, dyn) [5; 
Theorem 2.4].  

Several examples of d-simple rings of dimension 
greater than one and even of infinite dimension are 
exposed in [4, 5], such as the polynomial rings in 
finitely and infinitely many variables and the 
Laurent polynomial rings over a field K, the regular 
local rings of finitely generated type [6] , etc.   

Another important result that we are going to use 
later in this paper states that, if R is a d-simple G-
ring -  a wide class of rings containing all finitely 
generated algebras over fields and all complete 
local rings, and being closed under localization [3; 
pp. 249-257] - of characteristic zero, then R is a 
regular ring  [7; Theorem 1].     

3. Ideas from Algebraic Geometry 
This section contains the background from 
Algebraic Geometry which is necessary for the 
understanding of the rest of the paper. For general 
facts on Algebraic Geometry we refer to the books 
[8, 9].  

Definition 1: Let K be a field. Then the Cartesian 
product  

Kn = k x k x…x k (n-times) 

is called an affine space over K, and its elements 

a = (a1, a2,,…,, an), 

are called points of  Kn, with a1, a2,,…,, an in K 
being the coordinates of the point a. . 

Definition 2: Let K[x1, x2,….,xn] be a polynomial 
ring over a field K . Then a subset Y of Kn is called 
an algebraic set over Kn, if there exists a non-
empty subset S of K[x1, x2,….,xn] such that   

Y = {a∈  Kn: f(a) = 0, ∀ f ∈S}. 

We write then Y = U(S), while, if S = {f} is a 

singleton set, we write for simplicity Y = U (f).  

Examples:  U(0) = Kn, U(1) = ∅  , U(x1
2+x2

2-1) = 
unit circle, U(x2-x1

2) = parabola, U(x1
2+x2

2+x3
2-1) = 

unit sphere, U(x1
2-x2

2-x3
2) = cone, etc. 

Definition 3: Let Y be an algebraic set of an affine 
space over a field K. Then, it is easy to check that 
the set 

I = J(Y) = {f∈  K[x1, x2,….,xn]: f(a)=0, ∀ a∈Y} 

 is an ideal of  K[x1, x2,….,xn], called the ideal of Y. 

As a special case J(∅ ) = K[x1, x2,….,xn], while if 
K is an infinite field , then J(Kn) = 0. 

Obviously, if Y= U (S), then J(Y)⊇S. Further we 
have: 

Proposition 4: If Y is an algebraic set over Kn, then  

Y = U(J(Y)) 

Proof: If a∈Y, then, by Definition 3, f(a) = 0, for 
all f in J(Y). Hence, by definition 2, a is in U(I(Y)), 
therefore Y ⊆  U(J(Y)). 

Conversely, let Y = U(S) and let a∈  U(J(Y)). Then, 
by Definition 2, f(a) = 0  for all f in J(Y). But 
J(Y)⊇  S, therefore f(a) = 0  for all f in S, which 
means that a∈Y. Thus U(J(Y)) ⊆  Y. 

Definition 5: Let Y be an algebraic set of an affine 
space over a field K and let I= J(Y). Then the factor 
ring  

R = K[x1, x2,….,xn] / I 

is called the coordinate ring of Y. Further, the 
dimension of Y is defined to be equal to the 
dimension of R. 

Definition 6:  Let Y be an algebraic set of an affine 
space over a field K, let R be the coordinate ring of 
Y and let a  be a point of Y. It is easy then to check 
that the set  

J(a) = {f∈  K[x1, x2,….,xn]: f(a) = 0} 

is a maximal ideal of the polynomial ring  K[x1, 
x2,….,xn]. Therefore, the image Ma = J(a)/I of J(a) 
in R is a maximal ideal of R. Then, the local ring Ra 
= RMa is called the local ring of a in Y.  
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Definition 7: An algebraic set of an affine space 
over a field K is said to be irreducible if it cannot 
be written as the union of two smaller algebraic 
sets.  

In this paper an irreducible algebraic set is called a 
variety. 

Definition 8: Let Y be a variety over Kn and let a 
be a point of Y. Then an element (b1, b2, …, bn) of 
Kn is said to be a tangent to Y at a, if for all f in 
J(Y) we have that 

( )
j j

f a
x

∂
∂∑  = 0. 

It is easy to check that the set Ta of all tangents of 
Y at a is a vector space over K called the tangent 
space of Y at a..  

It is well known that the dimension of the vector 
space Ta is equal to the minimal number, say 
V(Ma), of generators of the maximal ideal Ma of the 
local ring of a in Y (Definition 6). But, by the 
generalized principal ideal theorem [2; Theorem 
152) ht Ma ≤  V(Ma). But R is a finitely generated 
algebra, therefore dim R = ht Ma, therefore  

dim R≤  dim Ta. 

Definition 9: Let Y be a variety over Kn. Then a 
point a of Y is said to be a simple point, if the 
dimension of Y is equal to the dimension of the 
tangent space Ta.  Otherwise a is called a singular 
point of Y. 

A variety Y has always simple points, while it may 
have or not singular points. 

Definition 10: A variety Y over Kn not having 
singular points is called a smooth variety, 
otherwise it is called a singular variety.  

It is now easy to prove the following result: 

Proposition 11:  If the coordinate ring of a variety 
Y over Kn is a regular ring, then Y is a smooth 
variety. 

Proof:  Let a be any point of Y and let Ra be the 
local ring of a in Y. Since R is a regular ring, dim 
Ra = V(Ma). But R is a finitely generated K-
algebra, therefore  

dim R = ht Ma .= dim Ra = V(Ma) = dim Ta . 

This shows that a  is a simple point of Y, therefore 
Y is a smooth variety.   

4. Main results 
In this section we present examples of smooth 
varieties, whose coordinate rings admit simple 
derivations, i.e. they are differentially simple rings. 
We emphasize that this is not always true; e.g. it is 
well known that the coordinate ring 

S=
)1(

],,[
2

3
2

2
2

1

321

−++ xxx
xxxIR

 

of the real sphere, although it is regular, admits no 
derivation d , such that S is d-simple. [7; Section 3, 
Example (iii)].  

We start with the following result showing that 
only the coordinate rings of smooth varieties can 
admit simple derivations: 

Theorem 12:  Let k be a field, let n be a non 
negative integer, and let Y be a singular variety 
over k n . Then the coordinate ring R of Y admits no 
simple derivations.    

Proof: Assume that there exists a derivation d of R, 
such that R is a d-simple ring. But R, being a 
finitely generated K-algebra is a G-ring, therefore 
R is a regular ring [7; Theorem 1]. Consequently, 
by Proposition 11, Y is a smooth variety, which 
contradicts our hypothesis..  

Next we are going to present some characteristic 
examples of smooth varieties having d-simple 
coordinate rings, for suitably chosen k-derivations 
d of them.   

First, we study the case of the circle: 

Theorem 13:  The coordinate ring  

R=
)1(

],[
2

2
2

1

21

−+ xx
xxk

 

of the unit circle defined over a field k admits k-
derivations d such that R is a d-simple ring. 

Proof:  Since P = ( )12
2

2
1 −+ xx  is a prime ideal 

of k[ ], 21 xx , we have that dim R = 2 – ht P and 
therefore, by the principal ideal theorem [2; 
Theorem 142), dim R = 1. 
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Consider the k-derivation d of k[ ], 21 xx  defined by   

d 1x  =a 2x , d 2x =-a 1x , 

for some non zero element a of  k. Since dP⊆P, d 
induces a k-derivation of R, denoted also by d. 

Given f in k[ ], 21 xx , set f = f + P, then  

2112 xdxxdx − = a. 

Thus the result follows by Theorem 2.4 of  [5], 
stating that, if d is a k-derivation of an one-
dimensional finitely generated k-algebra, say 
R=k[ nyyy ,...,, 21 ], then R is d-simple, if, and only 
if, R = ( ndydydy ,...,, 21 ).  

Next, we consider the case of the cylinder: 

Theorem 14:  The coordinate ring  

C=
)1(

],,[
2

2
2

1

321

−+ xx
xxxk

 

of the cylinder defined over a field k is d-simple for 
suitable k-derivation d of  C. 

Proof:  Reconsider the coordinate ring R of the unit 
circle. We can write  

R=k [ 21 , xx ] 

and  

C = k [ 321 ,, xxx ] = R [x 3 ]. 

The derivation  

d = 1
2

2
1

x
x

x
x ∂

∂
−

∂
∂

 

of k [ ], 21 xx  induces a derivation of R, denoted 
also by d. 

The above derivation d is the special case of the 
derivation of Theorem 13 for a = 1, therefore R is a 
d-simple ring.  

We shall show that d can be extended to a 
derivation of C, such that C is also a d-simple ring.  

For this, observe first that any F in R can be written 
in the form  

F= 2
0

n i

i
i

g x
=
∑ , 

where n is a non negative integer and g i  is in k 

[ 1x ], for each i. 

But  

2

1

2

2 1 xx −= , 

therefore  

F = 2f x + g  , 

with f, g in k [ 1x ].  

This expression of f is unique, because  

2f x + g = 0  

gives that  

f )1( 2
2

2
12 −+=+ xxhgx . 

Thus, on comparing the degrees of both sides with 
respect to 2x , it turns out that h = 0 and therefore 

 f = g = 0. 

We shall show further that dF≠ 1, for all F in R.  In 
fact,  

dF = d 2 2f x f d x d g+ +  

2 2

2 1 2 1 1 2
1 1 1 1

(1 )f g f gx f x x x f x x
x x x x

∂ ∂ ∂ ∂
= − + = − − +
∂ ∂ ∂ ∂

 

Thus, if dF=1, by the uniqueness of this 
expression, it follows that   

1x
g

∂
∂

= 0  

and 
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(1-
2

1 1
1

) 1fx f x
x

∂
− =

∂
           (1). 

    But  

f = i
t

i
i xa 1

0
∑
=

 

for some non negative integer t, with iα  in  k, for 
each i.  Thus, equating the leading coefficients in 
(1), we find that  

- (t+1) tα =0. 

Therefore tα =0,  which contradicts (1). 

 Consider now the derivation   

1
2

2
1

x
x

x
x ∂

∂
−

∂
∂

+
3x∂
∂

 

 of k [ ]., 321 xxx , which induces a derivation of C, 
whose restriction in R is d.  Denote the above 
derivation by d as well. We shall show then that C 
is a d-simple ring. 

In fact, assume that I is a proper non zero d-ideal of  
C = R[x 3 ] and let A be the set of the leading 
coefficients of all the polynomials of least degree, 
say n, in I.. Obviously then A is a proper non zero 
ideal of R 
 
Let a be in A, then there is a polynomial F in I, 
such that F = ax n

3 + terms of lower degree.  

But dF = (da) x n
3 + terms of lower degree is also in 

I and therefore da is in A.Hence A is a d-ideal of  
R, so A=R.  

This means that there exists a monic polynomial, 
say G=x 1

313
−

−+ n
n

n xa + terms of lower degree, in I.  

Then dG =nx 1
31

1
3 )( −

−
− + n

n
n xad + terms of lower 

degree is also in I and has degree less than n, 
therefore d G = 0. In particular  

n  +  d( 1−na ) = 0 , 

or  

d (- 1
1

−na
n

)=1, 

a contradiction, since  

- 1
1

−na
n

= F is in R. 

Remark: The varieties whose ideals are principal, 
like the circle and the cylinder, are called 
hypersurfaces.  

Next we study the case of the real torus obtained 
by rotating a cycle around an axis in its plane 
which does not intersect it (Figure 1).  

 

Figure 1: The surface of a torus 

For this, we need the following Lemma:  

Lemma 15: Let A= R [ nxxx 221 ,...,, ] be a 
polynomial ring over the field R of the real 
numbers. Then the R -derivation d of A defined by  

d 2 1 2i i ix a x− = ,  d(x 122 ) −−= iii xa , 

with ia  in R for each i = 1, 2,…n, induces a 
derivation of the ring  

T=
)1,.....,1( 2

2
2

12
2

2
2

1 −+−+ − nn xxxx
A

, 

denoted also by d, such that  T is d-simple if, and 
only if, naaa ,....,, 21  are linearly independent over 
the ring Z of integers. 

Proof: Set  
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I= )1,.....1( 2
2

2
12

2
2

2
1 −+−+ − nn xxxx . 

Since   

d (x 12
2

2
12 −+− ii x ) = 0 

 for each i, is d I I⊆  , and therefore d induces a 

derivation of  T=
I
A

. 

Consider now the polynomial ring  

B=C [ nxxx 221 ,...,, ], where C denotes the field of  

complex numbers and set   

I e = BI. Then d extends to a C-derivation of B by  

d (f + ig) = df + idg 

for all f, g in A. It is easy to check that I e is a d-

ideal of B, therefore d lifts to a C-derivation of eI
B

.  

It is straightforward to show that  
I
A

 is a d-simple 

ring, if, and only f, eI
B

 is a d-simple ring. 

Set  

y e
jjj Iixx ++= − )( 212  

and   

y =−1
j

e
jj Iixx +−− )( 212 , 

for  j = 1,2,….,n. Then we have that   

2

1

12

−

−

+
=+ jje

j

yy
Ix ,  

2

1

2

−−
=+ jje

j

yy
Ix  , 

and  

y e
jj Iy +=− 11 , 

for each j and therefore we can write   

eI
B

 = C [y1 , y 11
1 ,,....., −−

nn yy ]. 

But 

d (y 2 1 2) [ ( )] e
j j jdx id x I−= + +  

2 2 1( j j j ja x ia x −= − + I jjjj
e ybyia =−= . 

Therefore the result follows by Theorem 3.5 of [4], 
stating that C [y1 ,y 11

1 ,,....., −−
nn yy ] is d-simple, if, 

and only if, the b j 's are linearly independent over 
Z. 

For n =2 the ring  

T= 1 2 3 4
2 2 2 2

1 2 3 4

[ , , , ]
( 1, 1)

R x x x x
x x x x+ − + −

 

of Lemma 15 is the coordinate ring of the real 
torus, considered as a 2-dimensional surface in 4 
dimensions. Thus one obtains the following result: 

Theorem 16:  The coordinate ring T of the real 
torus is d-simple for suitable R-derivations d of T. 

Proof: Set  

d =
4

3
3

4
2

1
1

2 x
ax

x
ax

x
x

x
x

∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

, 

where a is an irrational number and apply 
Lemma.15. 

Remark: Combining the above results with 
Corollary 3.6 of [10] one obtains examples of 
simple skew polynomial rings over the coordinate 
rings of the circle, the cylinder and the real torus. 

References 
[1] Atiyah, M. F. & MacDonald, I. G., Introduction       
     to Commutative Algebra, Addison-Wesley,   
     Reading, Massachusetts, 1969. 
[2} Kaplansky,  I., Commutative Rings, Revised  
      Edition, The Univ. of Chicago Press, Chicago  
      and London, 1974. 
[3] Matsumura H., Commutative Algebra, Second  
      Edition, Benjamin/Cummings, Reading, Mass..,  
       1980. 
[4] Voskoglou M.Gr., Differential simplicity and  
      dimension of a commutative ring, Riv. Mat.     

Michael Gr. Voskoglou
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 58 Volume 2, 2017



         Univ.. Parma,, 6(4), 111-119, 2001. 
[5] Voskoglou M.Gr., Derivations and Iterated     
      Skew Polynomial Rings, NAUN International  
      Journal of Applied Mathematics and  
      Informatics, 6(2), 2011, pp. 32-90. 
[6] Hart, R., Derivations on regular local rings of  
      finitely generated type, J. London Math. Soc.,  
      10, 1975, pp. 292-294. 
[7] Hart, R., Derivations on commutative rings, J.  
      London Math. Soc., 8, 1974, pp. 171-175.  
[8] Fulton W., Algebraic Curves: An introduction  
      to Algebraic Geometry, Benjamin / Cummings,  
      Reading, Mass. , 1978 
[9] Mumford, D.., Algebraic Geometry I - Complex  
      projective varieties, Springer, New York, 1995 
[10] Voskoglou M.Gr.., Simple skew polynomial  
        rings, Publ. I. Math. (Beograd),  37(51), 1985,  
        pp. 37-41. 

Michael Gr. Voskoglou
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 59 Volume 2, 2017




