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Abstract: Virtualization is widely used due to its flexibility, scalability, and cost reduction. In virtualization, 
virtual machines (VM) should be placed optimally onto physical machines (PM) to reduce power consumption 
and avoid resource shortages. VM placement is an intractable combinatorial optimization problem. Moreover, 
optimal VM placement changes if the loads on VMs change over time. This means that load change necessitates 
VM migration among PMs. Since VM migration incurs network load, migration frequency must be small. Thus, 
both power consumption and the number of migrations should be minimized when determining VM placement. 
This research formulates the problem and examines algorithms that solve it. The examined algorithms include 
two metaheuristics, i.e., simulated annealing and tabu search methods. A method previously presented by the 
author was also tested for comparison. These methods were evaluated through computer simulation. 
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1 Introduction 
Currently, virtualization [1] is widely used as the 
basis of cloud computing due to its multiple 
advantages, including high flexibility, scalability, 
security, and low cost [2]. Generally, in a virtualized 
environment, multiple virtual machines (VM) are 
hosted on a physical machine (PM). Shared 
computational resources are assigned to each VM by 
the host PM. However, the host PM’s resources 
should not be consumed excessively for sufficient 
VM performance. 

Assume that multiple VMs are hosted on multiple 
PMs and that the load varies among VMs. Each VM 
should be allocated sufficient resources to ensure 
satisfactory performance. The number of required 
PMs and power requirements depend on the 
placement of VMs among the PMs. Efficient 
placement of VMs among PMs is a combinatorial 
optimization problem that cannot be resolved easily. 
In some cases, VM placement optimization is 
equivalent to a bin-packing problem [3]. Thus, the 
problem is NP-hard. 

Optimal VM placement will change when the 
loads on VMs vary over time. This requires migration 
of VMs among PMs. The live migration technique 
[4] enables VMs to be moved among PMs without 
interrupting services. However, VM migration incurs 
a load on the network. Thus, placement and migration 
relative to load changes must be determined so as to 
minimize power consumption and network load. 

Methods to optimize VM placement and 
migration have been reported in the literature [5-8]. 
Reference [5] attempted to minimize several 
efficiency metrics. However, it is unclear whether the 
objective function used in [5] is practical. The 
optimization methods reported in [6, 7] minimize 
power consumption. However, they do not consider 
load incurred by migration. The method proposed in 
the author’s previous work [8] optimizes VM 
placement considering both power consumption and 
network load incurred by migration. However, this 
method assumes the computational capability of each 
PM is identical. Optimization should consider the 
heterogeneity of computational capability because 
PMs may have different specifications in a real-world 
environment. In addition, a solution obtained by the 
author’s previously proposed method [8] may not be 
sufficiently close to the strict optimum. 

This study investigates VM placement and 
migration optimization assuming a time-varying load, 
multiple computational resources that affect 
performance, and heterogeneous PM specifications. 
The objective function considers power consumption 
and the network load incurred by migration. This 
study examines two metaheuristics, i.e., simulated 
annealing and tabu search methods. These methods 
are known to be effective for complex optimization 
problems, such as VM placement. The previous 
method [8], which has been modified for 
heterogeneous PM capability, is also tested. The 
algorithms are assessed through computer simulation, 
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and the results show that the simulated annealing and 
tabu search metaheuristics provide better solutions 
than the method of [8]. 

The remainder of this paper is organized as 
follows. Section 2 describes the problem. The 
examined algorithms are discussed in Section 3. 
Section 4 evaluates the algorithms through computer 
simulation. Related work is reviewed in Section 5, 
and conclusions are provided in Section 6. 

 
 

2 Problem Description 
Assume m VMs denoted by VM1, VM2,…, VMm. 
Each VM is hosted by one of n PMs denoted by PM1, 
PM2,…, PMn. The computational capability of the 
PMs may vary. Consider that the computational 
capability of a certain PM, for example PM1, is the 
standard. Then, the computational capability of PMj 
is j (1 )j n  times greater than that of the PM 
with standard capability. 

The performance of a VM depends on the 
consumption of K computational resources, e.g., 
CPU, memory, and network I/O, indexed as 1, 2, …, 
K. Let ui, k(t) (1 ,i m 1 )k K  denote the 
consumption of resource k at time t assuming that 
VMi runs on the standard capability PM. Note that 
ui, k(t) is expressed as a percentage. If VMi is hosted 
by PMj, it consumes ui, k(t)/ j % of resource k of PMj. 
The load on VMi is specified by resource 
consumptions ui, 1(t),…, ui, K(t). 

Let Uj, k(t) denote the percentile consumption of 
resource k on PMj at time t. Then, Uj, k(t) is expressed 
as follows. 

,
,

{  | VM is assigned to PM }

( )
( )

i j

i k
j k

i i j

u t
U t  (1) 

Resource consumption Uj, k(t) should not be 
greater than that required to provide VMs with 
sufficient resources to achieve good performance. 
Thus, this study introduces a constant C, and the VMs 
are assigned resources such that the following 
constraint is satisfied. 

, ( )j kU t C  (2) 

Power consumption depends on the utilization of 
computational resources [9]. Also, PMj can be turned 
off (i.e., no power is consumed) if it is not hosting 
any VMs. Here let Pj(t) denote the power consumed 
by PMj. Power Pj(t) is expressed as follows: 
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where Pj, 0 is the portion not affected by the load and 
Pj, 1,…, Pj, K are the coefficients showing how the 
consumption of resources 1,…, K affects the power. 

The placement of VMs is expressed by a binary 
variable xi, j(t) defined as follows. 

,

1,  if VM  is placed to PM  at 
( )

0, otherwise
i j

i j

t
x t  (4) 

Assume that the VM load is given at a discrete 
time t0, t1, t2, … Then, the problem is to determine 
xi, j(t) at t = t0, t1, t2, … such that Pj(t) and the 
migration load are minimized and Eq. (2) is satisfied. 

The network load incurred by migration is 
roughly determined by the memory size assigned to 
the VM [10]. Consequently, if memory size is 
identical for each VM, the network load is 
proportional to the number of migrated VMs. Here, 
binary variable yi(t) for VMi and time t is used to 
estimate the number of migrating VMs. At time ts (s 
= 1, 2,…), yi(ts) is 1 if VMi is being migrated. 
Otherwise, yi(ts) is 0. If VMi migrates to PMj, xi, j(ts) 
is 1 and differs from xi, j(ts – 1). Therefore, yi(ts) for 
s > 0 is expressed as follows. 

, , 1( ) ( ) ( ),i s i j s i j sy t x t x t 1 j n  (5) 

At t0, yi(t0) is 0 because no previous placement 
exists. Let v(t) denote the number of migrated VMs. 
v(t) is the sum of yi(t), which is expressed as follows. 

1
( ) ( )

m

i
i

v t y t  (6) 

Let x denote the vector of decision variables, 
including xi, j(t), yi(t), v(t), Uj, k(t), and Pj(t). The 
objective function f(x) is defined as the weighted sum 
of the power consumed by the system and the number 
of migrations: 

1
( ) ( ) ( )

n

j
j

f P t w v tx  (7) 

where w ( 0)w  is the weight parameter. Then, the 
problem is to determine x that minimizes f(x) for a 
given ui, k(ts) and xi, j(ts – 1) at time ts ( 0)s . This is 
formulated as the following mixed integer 
programming (MIP) problem: 

minimize 
1 1

( ) ( ) ( )
n m

j s i s
j i

f P t w y tx  (8) 
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where s > 0. When s = 0, the restriction of Eq. (11) is 
omitted and yi(t0) is set to 0. This means that 
migrations do not need to be considered when the 
initial placement is determined at t0. 

In the above formulation, Eq. (9) is equivalent to 
Eqs. (1) and (2). Thus, the equation represents a 
restriction that avoids resource shortage. Eq. (10) 
requires all VMs to be placed on a PM. Eq. (11) is the 
same as Eq. (5) and determines the number of 
migrations. Eq. (12) is an alternate expression of 
Eq. (3), i.e., it is derived by rewriting Eq. (3) using 
xi, j(ts). This equation determines the power 
consumption of a PM.  
 
 
3 Algorithms 
3.1 Greedy Method for Initial Placement 
The two metaheuristics examined in this study 
require an initial solution, which is obtained using a 
greedy algorithm. For a given ui, k(t), the greedy 
algorithm assigns VMs to their hosts as follows. 

Algorithm Greedy-Fit 
1. Uj, k(t):= 0 for all (j, k); 
2. V:= set of all VMs; 
3. while V  Ø do 
4.  max:= – ; 
5.  for each pair of VMi in V and PMj do 
6.   U*

k:= Uj, k(t) + ui, k(t)/ j for all k; 
7.   Compute Pj for resource consumption U*

k;  
8.   Compute efficiency metric ej; 

9.   if ej > max then  
10.     max:= ej; 
11.     VMbest:= VMi; 
12.     PMbest:= PMj; 
   end if 
  end for 
13.  Assign VMbest to PMbest; 
14.  V:= V – {VMbest}; 
 end while 

The efficiency metric ej is defined for PMj as 
follows: 

*
1

KK
j kk

j
j

U
e

P
, (13) 

where U*
k is the tentative resource utilization 

obtained assuming VMi is assigned to PMj. With this 
metric, a placement that achieves low power 
consumption, higher resource utilization, and higher 
performance has higher priority. Thus, a good 
solution is expected by determining VM placement 
such that efficiency metric ej is maximized.  
 
 
3.2 Previous Method [8] 
The first examined method is a modified version of 
the algorithm described in [8]. This method 
calculates VM placement at time ts by modifying ts – 1 
using two types of migration. 

 Type 1: migration that avoids overload 

 Type 2: migration that reduces power 
consumption by deploying VMs onto as few PMs 
as possible 

The solution at t0 is found by the Greedy-Fit 
algorithm. At t1, t2, …, the algorithm selects the 
source PM, destination PM, and VM to be moved by 
evaluating the efficiency metric for the migration. 
Specifically, in Type 1, the metric difference caused 
by migration is estimated for all possible 
combinations of an overloaded source PM, a 
destination PM with spare resource capacity, and a 
VM hosted by the source PM. Then, migration is 
performed for the combination that maximizes the 
metric difference. This is repeated until overload is 
eliminated from all PMs. In Type 2, the metric 
increase is estimated for all combinations of a source 
PM, a destination PM, and a VM hosted by the source 
PM. Again, the migration is executed such that the 
metric increase is maximized. This is repeated until 
no combination can increase the metric. 

The efficiency metric employed in this study is 
slightly different from that used in [8] in order to 
assess heterogeneous PM performance. In other 
words, PM and VM selection is performed using the 
metrics in Eq. (13). 
 
3.3 Simulated Annealing 
Simulated annealing [11] is a powerful metaheuristic 
for solving complex optimization problems. This 
method repeatedly updates a solution by searching a 
neighborhood of the current solution. In the update 
process, the neighborhood solution is accepted as a 
new solution if the objective function decreases. The 
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neighborhood solution is accepted with some 
probability p even when the objective function 
increases. Here, let T denote the parameter that 
controls p. This parameter is called temperature. 
Moreover, let xn°w and xbest be the decision variables 
of the current solution and the best discovered 
solution, respectively. The method is then described 
as follows. 

Algorithm Simulated-Annealing 
1. xbest:= xn°w:= the output of Greedy-Fit; 
2. T:= T0; 
3. for q:= 1 to Q do 
4.  if q = Q1 or Q2 then T:= T1; 
5.  while the system is not in equilibrium do 
6.   xnext:= neighborhood of xn°w; 
7.   if f(xnext) < f(xbest)  
8.    then xbest:= xn°w:= xnext 
9.    else with probability p, xn°w:= xnext; 
  end while 
10.  T:= T; 
 end for 
11. Output xbest and f(xbest); 

In the algorithm, Q1 and Q2 are integers, where 
Q1 < Q2 < Q, parameter  is a real number, where 
0 <  < 1, T0 is a positive constant, and T1 is a 
constant, where T1 < T0. 

The method enables the solution to escape a local 
minimum by allowing the tentative solution to 
become degraded. The acceptance probability p for 
the objective function increase is defined by the 
increase rate of the objective function f and 
temperature T.  

/f Tp e  (14) 

The increase rate f is defined as follows. 
next now

now

( ) ( )
( )

f ff
f

x x
x

 (15) 

Temperature T is first set to a large value T0. The 
process is then repeated with decreasing T. Thus, the 
acceptance probability p also decreases, as implied 
by Eq. (14). As step 10 suggests, T is decreased 
gradually with the completion of steps 5-9. In other 
words, the system is cooled after it reaches 
equilibrium. A near-optimal solution is obtained 
when T becomes sufficiently low. 

A neighborhood solution xnext is generated from 
xn°w by randomly executing one of the following 
methods. 

 Method 1: A VM is selected randomly. A PM is 
then selected randomly from the PMs not hosting 

the selected VM in xn°w. Subsequently, xnext is 
created by reassigning the VM to the selected PM. 

 Method 2: Two VMs hosted by different PMs are 
chosen randomly from xn°w. Then, xnext is created 
by exchanging the PMs for these VMs. 

 Method 3: Two VMs hosted by different PMs are 
chosen randomly from xn°w. A PM that differs 
from the hosts is also selected randomly. Then, 
xnext is generated by reassigning the first VM to 
the PM that hosts the second VM and reassigning 
the second VM to the third PM. 

In a simulation, the probabilities of selecting 
Methods 1, 2, and 3 were tuned to 0.5, 0.2, and 0.3, 
respectively. The state for each value of T was 
considered to be in equilibrium if the neighbor 
solution is accepted X times or unaccepted Y times. 
Initial temperature T0 was set to 0.07 in the 
simulation. Parameters X, Y, , and Q were set to 
100mn, 400mn, 0.995, and 3000, respectively. 

In the above algorithm, step 4 provides a “re-
annealing” process. This process increases the 
temperature to T1 after the system is cooled 
sufficiently. Then, the cooling process is resumed 
from temperature T1. The behavior of the temperature 
is shown in Fig. 1.  

 
Fig. 1 Temperature behavior employed in the 
simulated annealing method 

In the re-annealing process, parameters Q1 and Q2 
determine when the temperature increases to T1. Here, 
the values of Q1, Q2, and T1 were tuned to 1200, 2100, 
and 0.015, respectively. The re-annealing process is 
considerably effective at improving solution 
goodness without increasing computational time. 

 
 

3.4 Tabu Search 
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Tabu search [12] is another powerful metaheuristic 
used for optimization problems. This method updates 
a solution repeatedly by searching a neighborhood of 
the current solution. The update is performed 
according to a rule that is determined to effectively 
search the solution space. In other words, recently 
examined variable changes are recorded in a “tabu” 
table and then avoided. The frequency at which a 
variable changes is also considered, and infrequent 
changes have higher priority. Even for a change that 
does not satisfy these rules, the neighborhood 
solution is accepted only if it improves the solution. 
The algorithm is written as follows. 

Algorithm Tabu-Search 
1. xbest:= xn°w:= output of Greedy-Fit; 
2. for r:= 1 to R do 
3.  G1:= {x | neighborhood of xn°w and x satisfies the 

rule}; 
4.  G2:= {x | neighborhood of xn°w and x does not satisfy 

the rule}; 
5.  xn°w:= x that minimizes f(x) for x in G1; 
6.  if f(x) < f(xbest) and f(x) < f(xn°w) for some x in G2 

then xn°w:= x; 
7.  if f(xn°w) < f(xbest) then xbest:= xn°w; 
 end for 
8. Output xbest and f(xbest); 

In this study, steps 3 and 4 are executed by 
randomly selecting one of the following methods at 
equal probability. 

 Method 1: Sets G1 and G2 are constructed by each 
pair of VMi and PMj that does not host VMi in xn°w. 
For each pair, x is obtained by reassigning VMi to 
PMj. Solution x is added to G2 if VMi is listed in 
the tabu table or the frequency of assigning VMi 
to PMj exceeds a threshold. Otherwise, x is added 
to G1. 

 Method 2: A neighborhood is found by each pair 
of VMs hosted by different PMs in xn°w. For such 
a pair, x is obtained by changing the hosting PMs. 
Solution x is added to G2 if the VMs are included 
in the tabu list. Otherwise, x is added to G1. 

The tabu table and frequency are updated after 
steps 3-7 are completed. The tabu table used in 
Method 1 lists the VMs recently used to create the 
new solution. Its size is denoted by S1. The tabu table 
of Method 2 also lists the VMs affected in the 
recently accepted neighborhood solution. The size is 
denoted by S2. In Method 1, let variable Fi, j and R1 
denote the frequency of reassigning VMi to PMj and 
the frequency of executing the method, respectively. 

The frequency criteria for creating G1 is expressed as 
follows: 

1
1, ,i j

RF
mn

 (16) 

where  is a constant and is the smallest integer 
not less than . The probability of randomly selecting 
a combination of VMi and PMj is (mn)–1. Thus, 
Eq. (16) omits the combination of VMi and PMj from 
G1 if it has been used  times more frequently for a 
new neighborhood than the average. 

Parameters S1, S2, , and R were tuned to 7, 8, 2.6, 
and 6 106, respectively, in the simulation. 
 
 
4 Evaluation 
The optimization algorithms were evaluated through 
a computer simulation, and the algorithms were 
executed for randomly generated problems. The 
solutions obtained by each algorithm were then 
compared. 

The simulation model is specified as follows. The 
number of VMs, m, was 40 and the number of PMs, 
n, was 20. The number of computational resources 
was two, and constant C was set to 90. The 
performance parameter j and power coefficients Pj, k 
for PMj were set as shown in Table 1. 

Table 1 PMj parameters 
Range of j j Pj, 0 Pj, 1 Pj, 2 

1 5j  1.0 80.0 40.0 10.0 
6 10j  1.5 120.0 60.0 20.0 

11 20j  1.0 120.0 60.0 20.0 

The load on the VMs was provided at times t0, 
t1, …, t14, and VM placement was determined for 
these times. The load on VMi was specified by ui, k(t). 
The base value denoted by ũi, k was used to determine 
ui, k(t). This base value is an integer randomly 
selected in the range [1, 50] for each pair of i and k 
with equal probability. Load ui, k(t) was then 
determined as summarized in Table 2. 

Table 2 VM resource consumption 
VMs ui, k(t) 

VM1, …, VM20 
Randomly selected integer 
from [1, ũi, k] 

VM21,…, VM40 
ũi, k, for t5, t6, …, t9 
ũi, k / 2, otherwise 

Thirty problems were generated by changing the 
random seed for ũi, k and ui, k(t). The algorithms 
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described in Section 3 were programmed in the C 
language and executed for the generated problems. 
The programs were executed on a Linux (CentOS 7) 
PC with a Core i5 CPU and 16 GB RAM. 

The generated problems were also solved by 
optimization software [13] for comparison. This was 
performed by formulating each problem as a MIP 
problem according to Eqs. (8)-(12) and feeding it to 
GAMS/CPLEX [14], which runs on the Microsoft 
Windows operating system. 

Fig. 2 compares the objective function value 
obtained for each method. Here, the x axis is the 
weight parameter w and the y axis is the objective 
function value. The value is the average of the sum 
for t0, t1, …, t14 over 30 problems. 

 
Fig. 2 Objective function values 

Fig. 2 clearly shows that the simulated annealing 
and tabu search methods provide good solutions that 
are very close to those obtained by MIP. These 
metaheuristics are superior to the algorithm of [8] 
relative to solution goodness. The tabu search method 
provides better solutions when 10,w  whereas the 
simulated annealing method is superior when 15w . 
Thus, it is inconclusive which metaheuristic is more 
advantageous. The best method should be determined 
by considering whether power or network load is 
more important. 

Fig. 3 plots power consumption against the 
number of migrations for different w values. The 
power consumption and the number of migrations are 
the average of the sum for t0, t1, …, t14. As can be seen, 
the number of migrations is greater for the simulated 
annealing method to obtain smaller power 
consumption (i.e., a smaller w value). This method 
yields worse solutions than the MIP and tabu search 
methods for small w values due to this characteristic. 
In contrast, the simulated annealing method yields a 

solution that is very close to that of the MIP approach 
when w is large. However, the reason for this 
behavior remains unclear. Thus, further study is 
required to examine this problem. 

 
Fig.3 Relation between power consumption and 
number of migrations 

Table 3 compares computational time. The 
computational time was measured using the Linux 
"time" command for the execution of each 
algorithm. The time is the average over 15 time 
periods for 30 problems. As can been seen, the 
computational time is much greater for the simulated 
annealing and tabu search methods than the method 
proposed in [8]. However, the time is acceptable 
when the placement interval is greater than several 
minutes. Note that the computational time for a single 
time period for the MIP approach is longer than three 
hours for some problems. Thus, the assessed 
metaheuristics are more advantageous and practical 
than the MIP approach relative to computational time. 

Table 3 Average computational time to obtain a 
solution for a single time period 

Method of [8] Simulated 
annealing Tabu search 

0.000311 s 123.34 s 53.15 s 
 
 
5 Related Work 
VM placement and migration optimization has been 
reported in several studies [3, 5-8, 15-17]. Reference 
[3] explored multiple aspects of the problem, i.e., 
demand characteristics, a benefit evaluation of 
dynamic VM placement, demand forecasting, and the 
placement algorithm. The algorithm proposed in [3] 
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attempts to reduce the number of PMs and satisfy a 
given service level agreement. 

The method proposed in [5] considered 
temperature, performance, and power efficiency 
metrics. That method determines initial and dynamic 
VM placement to maximize the utility function that 
combines these metrics. The considered 
computational resources include a CPU, I/O, and a 
network. However, the validity of their utility 
definition is unclear.  

Reference [6] presented a VM placement 
optimization method assuming heterogeneous power 
consumption and computational capability 
represented by MIPS (million instructions per 
second). The objective of this optimization is to 
minimize only power consumption. Thus, the method 
does not consider the network load incurred by 
migration. Moreover, the method considers CPU 
utilization as the sole computational resource. 
However, other resources can influence performance.  

Reference [7] applied the ant colony heuristic to 
the VM placement problem. Similarly, this method 
did not consider the network load incurred by 
migration.  

The author’s previous research [8] attempted to 
optimize both power consumption and migration load. 
However, the method assumes uniform 
computational capability for all PMs. In addition, the 
employed algorithm does not necessarily provide 
good solutions compared to the MIP approach.  

Some studies have dealt with optimal VM 
placement from a quite different perspective. For 
example, the purpose of [15, 16] is to determine VM 
placement that minimizes data access latency. In 
these studies, the power consumption and load by 
migration were not considered even though they are 
practically important.  

Reference [17] considered average power 
consumption and wastage balance between the CPU 
and memory. However, this may not be relevant 
because it is not always necessary to consume two 
resources equally to obtain good performance or less 
power consumption. In addition, in some cases, the 
performance of a system can depend on three or more 
resources, e.g., CPU, memory, and network I/O. It is 
unclear how the method in [17] treats such cases. 
 
 
6 Conclusion 
This study has investigated algorithms to optimize 
the placement and migration of VMs among PMs. 
The algorithms determine placement and migration 
to minimize cost assuming PMs have heterogeneous 
power consumption and computational performance. 
In this study, cost was defined by the weighted sum 

of power and the number of migrations. The 
examined algorithms included the method proposed 
in [8] and two metaheuristics, i.e., simulated 
annealing and tabu search methods. These methods 
were evaluated in a computer simulation. The 
simulation results demonstrate that the 
metaheuristics obtained better solutions than the 
previously proposed method.  
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