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Abstract: Complex networks tend to display communities which are groups of nodes cohesively connected among
themselves in one group and sparsely connected to the remainder of the network. Detecting such communities
is an important computational problem, since it provides an insight into the functionality of networks. Further,
investigating community structure in a dynamic network, where the network is subject to change, is even more
challenging. This paper presents a game-theoretic technique for detecting community structures in dynamic as
well as static complex networks. In our method, each node takes a role of a player that attempts to gain a higher
payoff by joining one or more communities or switching between them. The goal of the game is to reveal commu-
nity structure formed by these players by finding a Nash-equilibrium point among them. The main contribution of
this paper involves the development of a computationally feasible algorithm for extracting high quality community
structure by deployment of existing novel game-theoretic techniques. We present the experimental results illustrat-
ing the effectiveness of the proposed method on both synthetic and real-world networks.

Key–Words: Community Structure, Overlapping Community Detection, Modularity, Dynamic Network, Extremal
Optimization, Nash Equilibrium

1 Introduction

Community detection problem in complex networks
has been the subject of intensive studies throughout
the last decade [12]. There is no formal or univer-
sally accepted definition for the notion of community.
Intuitively, a community can be seen as a dense set
of nodes with more edges within itself than to the
nodes outside the set. Community structure is the
set of all such communities in a network. Being able
to extract community structure within a network pro-
vides a deeper insight through the functionality of sys-
tems represented as networks. Most complex net-
works such as social or biological networks exhibit
community structure properties. In social networks
a community is interpreted as a set of people who
may have common interests, ethnicity or geographic
location. Protein-protein interaction network is an ex-
ample of a biological network displaying community
structure in which proteins in a community are likely
to have the same functionality[7]. Most techniques
for detecting community structures partition networks
into disjoint communities. However, most networks
inherently have overlapping community structure. In
social networks, people may be a member of multiple
social communities. In citation networks, researchers

may collaborate with different research groups. In the
protein-protein interaction network, a large fraction
of proteins, simultaneously, reside in multiple pro-
tein complexes. Thus, overlapping community detec-
tion reveals a deeper feature of real-world networks
[34, 40, 42].

Fundamentally, most complex networks are
highly dynamic. In each timestep, a dynamic net-
work is subject to a series of changes where new
nodes or edges either appear or some existing ones
vanish. Tracking and monitoring changes happening
in a community structure while the network is experi-
encing a series of events (including adding or remov-
ing nodes or edges), give an insight into the future
functionality of the system. Therefore, pursuing the
evolution of community structures, over time, in dy-
namic networks is more informative in comparison to
its static counterparts. An online community detec-
tion algorithm which is capable of updating the com-
munity structure at each timestep, should be able to
exploit the history of the community structure instead
of starting from scratch.

A major advance in the study of community de-
tection problem was made by Newman and Girvan
who introduced a quality measure Q, called mod-
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ularity [31]. Given a community structure C =
{c1, c2, ..., ck} in a corresponding network G =
(V,E) with node set V and the edge set E (n = |V |,
m = |E|), modularity is computed as

Q =
∑
c∈C

L(c)

m
− (

d(c)

2m
)2, (1)

where the sum runs over all communities. L(c) is the
number of edges inside community c and d(c) is the
sum of degrees of nodes in c.

Modularity was designed to measure the strength
of partition of a network into communities. High
value of this measure implies a community struc-
ture with dense communities which has more number
of intra-edges within communities than the expected
value of such number in a random partition. Optimiz-
ing modularity value is recognized as a NP-hard prob-
lem [4]. Therefore, a vast number of works have been
devoted to optimizing this measure by employing ap-
proximation and heuristic methods.

In [37], modularity is extended to the case of
overlapping community structure by involving num-
ber of communities to which a node belongs:

Qov =
1

2m

∑
c∈C

∑
v,w∈c

1

OvOw
(Avw −

kvkw
2m

). (2)

Here, Ov and Ow are the numbers of communities
to which nodes v and w belong, respectively. In the
case of disjoint community structure, Qov is reduced
to Newman and Girvan’s modularity Q.

Intuitively, the emergence of community struc-
ture in real networks is a bottom-up phenomenon and
nodes of a network as indivisible objects play a vi-
tal role in the formation of communities. A less
studied approach for community detection, first intro-
duced by Chen et al. [8] , involves game-theoretic
techniques which considers nodes of networks as ra-
tional decision makers [8, 23, 26]. In this line of
work, nodes are considered as a set of players who
decide to join or leave communities. Since, the game-
theoretic approach in community detection naturally
reflects the community structure formation in real-
world networks, it is worth further studies and expan-
sion. Our approach improves upon the best-known
game-theoretic algorithms (Game [8]), both in terms
of quality of obtained community structure and run-
ning time. Our proposed method is capable of resolv-
ing resolution limit problem, existing in modularity
optimization methods and detecting high quality over-
lapping as well as non-overlapping community struc-
ture from both static and dynamic networks, with an
asymptotically fast complexity.

We aim at, maximizing the extended version of
modularity by establishing a game among the nodes

of the networks as players. Initially, each player re-
sides in a singleton community and their goal is to
maximize their payoffs by choosing to reside in one
or more communities. The ideal state of the game
is to reach a Nash equilibrium point where no player
has a tendency to deviate from its situation by taking
a unilateral action. In a community formation game,
a Nash equilibrium point implies that players are not
able to gain a higher payoff by changing their commu-
nities, unilaterally. Further, an extremal optimization
method is employed in order to perform the search and
direct the game to a Nash equilibrium point.

2 Related Work

There exist various techniques in literature which try
to extract good quality community structures from
complex networks. Some methods reduce the com-
munity detection problem to graph partitioning, in
which a graph is divided into a predefined number
of communities such that the number of inter-edges
crossing the network is minimal[19]. One drawback
of graph partitioning is that, generally, the number
of communities is unknown. Hierarchical clustering
is another technique which considers a hierarchical
structure for the underlying networks and applies an
agglomerative [29] or divisive [35] method to build
a hierarchy of clusters. Hierarchical clustering tech-
nique requires a definition for similarity measure to
group similar nodes together. One advantage of this
technique is that there is no need for preliminary
knowledge about the size or number of clusters. How-
ever, since each level of hierarchy corresponds to one
partition of network, choosing the one as a true com-
munity structure without any quality function is prob-
lematic.

In principle, most techniques try to define a qual-
ity function and by maximizing it, obtain a high qual-
ity community structure [22, 15]. Modularity is the
best known quality function used as the quality index
of extracted community structure [31]. Modularity
maximization is NP-hard since the number of possible
divisions of a network into communities exceeds any
power of the network size (number of nodes). There-
fore, many works have been proposed to approximate
Q and obtain a fair value of this measure by using
greedy [29, 9], extremal optimization [11], simulated
annealing [17, 18, 36] or spectral optimization meth-
ods [39, 30].

In most techniques in literature, the extracted
community structure is a set of disjoint communi-
ties. However, it is more reasonable to have over-
lapping community structure where a node is not re-
stricted to merely belonging to one single community.
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A very popular method to extract overlapping commu-
nity structure is the clique percolation method (CPM)
introduced in [10]. CPM builds a community struc-
ture by percolating a k-clique, i.e., a complete graph
of k nodes, over a network. In this context, a commu-
nity structure is the union of all k-cliques that can be
reached from each other through the percolation pro-
cess. Trivially, since the k-cliques can share nodes,
the resulting community structure is overlapping. One
limitation of CPM is to make an assumption about
the value k. Besides, another critical problem with
CPM is its failure on networks with fewer number of
cliques.

Despite the difficulty of static community de-
tection where the nodes and edges are fixed, this
problem has also been studied on dynamic networks
[33, 16, 38, 1, 23]. Several evolutionary clustering
methods [6] have been proposed to extract evolv-
ing clusters, in a way that changes occurring in each
timestep are not dramatic and in a user point of view,
transitions seem smooth. In another attempt, AFOCS
[32] categorizes changes happening in a network, and
tries to take an appropriate action, accordingly, to up-
date the community structure. As an example, adding
a new edge inside an existing community is consid-
ered as one category.

A more recent and less studied approach for com-
munity detection is to formulate the problem as a
game where nodes of a network are a population of
decision makers who decide to join or leave commu-
nities with respect to their payoffs. Typically, at the
start of community detection games, players reside in
singleton communities [8, 26] or are distributed ran-
domly to some number of communities [23]. The
choice of payoff function plays an important role in
the quality of extracted community structures. One
possible payoff function is the contribution of each in-
dividual to the global modularity value. Therefore, by
establishing a game among the nodes of networks as
the players, instead of directly optimizing a global ob-
jective function, the players are appointed to take ac-
tions and maximize it as they seek to maximize their
own payoffs. Since, generally, achieving the maxi-
mum possible payoff does not exist, Nash equilibrium
is often employed as the solution concept in games
with no cooperation among the players. Nash equilib-
rium is a situation where no player has the tendency
to deviate from its strategy while the strategy of others
are kept unchanged.

3 Overlapping Community Detec-
tion Game

We refer to our method as Overlapping Communities
Extremal Optimization (OCEO). In this method, each
node takes a role as a player. A pair of players are con-
sidered neighbors if there is an edge between them.
The neighboring set of player i is defined as

Ni = {j ∈ V | ∃ (i, j) ∈ E}. (3)

The number of players is finite and the payoff of each
player is a function of chosen action from the player’s
strategy space. The players can only act on their turn.
The elements of the game are as follows:

• Players: {1, 2, ..., n} denotes the set of players.
Each player corresponds to a node in the set V .

• Strategies: The strategy space available to each
player i is to join an adjacent community or leave
one of its current communities. A community c
is considered adjacent to a player if at least one of
the player’s neighbors resides in c. The set of all
adjacent communities for the player i is defined
as

AC(i) = {c ∈ C | (∃ j ∈ Ni)
∧ (c ∈ Cj)},

(4)

whereCj is the set of all communities that player
j resides in. The strategy spaces of players (the
set of adjacent communities) are finite which
leads to a finite game.

• Payoffs: As stated, modularity Qov is the global
variable to optimize. The idea is to appoint play-
ers in the game to maximize it for us by defin-
ing the payoff function of players proportional to
their contributions to the modularity Qov. The
contribution of each individual i to modularity
Qov, by residing in community c, is computed
as

qi(c) =
∑

j∈c ∩ j∈Ni

1

OiOj
− ki

2mOi

∑
j∈c

kj
Oj

(5)

where Li(c) is the number of edges player i has
inside community c, ki is the degree of the player
(degree of the associated node) and d(c) is the
sum of degrees of all players residing in c. The
total contribution of player i to the modularity is
the sum of qi(c) over all communities that i be-
longs to.
More specifically,

qi =
∑
c∈Ci

qi(c). (6)
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Note that Qov = 1
2m

∑
i qi where i ∈ V . In

OCEO, we define the payoff function of each
player i in community c as the contribution of
the mentioned player to the global modularity by
residing in c, rescaled by the degree of the player:

ui(c) =
qi(c)

ki
(7)

Due to rescaling, the payoff of each associated
player would be relative to their own degree and
also normalized in the interval [-1,1] with 1 be-
ing the highest payoff a player can gain. There-
fore during the game as long as players attempt
to improve their payoffs, modularity Qov is opti-
mized.

The total payoff of Player i is the sum of all i’
payoffs in all communities i resides in, which is
computed as

ui =
∑
c∈Ci

ui(c). (8)

In order to obtain a high quality community struc-
ture which corresponds to a high value of modularity,
a heuristic search, based on extremal optimization is
employed to perform a local search. Extremal opti-
mization algorithm, proposed by Boettcher and Per-
cus [2], finds high quality solutions for hard optimiza-
tion problems by successively improving the undesir-
able components of the sub-solution. In other words,
extremal optimization works on a single candidate so-
lution and performs a local modification to the worst
components by treating each of the components as
species evolving locally through the process [3]. In
the context of our game, extremal optimization keeps
two solutions, that each of which corresponds to a
community structure. One community structure pre-
serves the best community structure found so far, and
the other evolves through some number of iterations
by performing a modification in the strategy of worst-
payoff players. OCEO is a non-cooperative game
since the players’ decisions are made independently
and there is no collaboration or coalition among the
players.

One of the most fundamental ideas for non-
cooperative games is the concept of Nash equilibrium
introduced by Nash [28]. Nash equilibrium point of
a game is a situation in which no player can gain a
higher payoff by taking a unilateral action. Existence
of Nash equilibrium depends on the choice of the pay-
off function in a game with finite number of players.

3.1 Existence of Nash Equilibrium in OCEO

In this section, we prove the existence of Nash equi-
librium in OCEO by characterizing it as a potential
game, introduced by Monderer and Shapley [27]. In
every finite potential game, the existence of Nash
equilibrium is guaranteed [5]. First, we define the no-
tions required for the definition of potential games.
Consider strategy profile χ = (χ1, χ2, ..., χn) as a
set of players’ strategies in the game in which χi
denotes the strategy of player i. In our game χi
is interpreted as a set of communities that Player i
resides in and χ is capable of revealing the com-
munity structure of the underlying network. A re-
duced strategy profile χ−i is the strategy profile χ
for all players excluding the strategy of player i, i.e.,
χ−i = (χ1, χ2, ..., χi−1, χi+1, ..., χn). We also use
(χ−i, χ

′
i) to denote a strategy profile where the strat-

egy of player i is replaced with strategy χ′i.

Definition 1 A game Γ(V,χ, {ui}i∈V ) with ui : χ �
R, is called an exact potential game, if it possesses
a potential function φ : χ � R such that ∀i ∈ V ,
∀x−i ∈ χ−i, ∀x′i ∈ χi:

φ(x−i, x
′
i)− φ(x) = ui(x−i, x

′
i)− ui(x). (9)

Specifically, the change in the payoff of Player i by
taking a unilateral action x′i is equal to the change in
the global potential function. There is a weaker class
of potential games, called weighted potential which
admits a ω−potential function.

Definition 2 Let ω = {ωi}i∈V be a vector of positive
weights. A game Γ is weighted potential if it admits a
ω−potential function φ : χ � R:

φ(x−i, x
′
i)− φ(x) = ωi(ui(x−i, x

′
i)− ui(x)). (10)

Note that the exact potential games are subset
of weighted potential games with ωi = 1 for each
player i ∈ V . it is proved that in every finite exact
or weighted potential games, the best response dy-
namics, i.e., dynamics in which each player chooses
a strategy with highest payoff, given the strategies of
the other players, converges to a Nash equilibrium in
a finite number of iterations [5].

Lemma 3 OCEO is a weighted potential game.

Proof: By considering the choice of payoff function
u, defined in Equation 8, and assigning weight vector
ω = (ωi)i∈V where ωi = 1

ki
for each player i ∈ V ,

it can be verified that OCEO accepts the following
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ω−potential function:

φ(χ) =
∑
i

(
∑

j∈Ni ∧
ci=cj∈χ

1

OiOj
− 1

2m

∑
i<=j ∧
ci=cj∈χ

kikj
OiOj

)

(11)
Therefore, OCEO possesses at least one Nash equilib-
rium point and we aim at finding such a point which
corresponds to the highest value of modularity Qov.
In order to incorporate the Nash equilibrium concept
into OCEO, we use a domination relation, Nash as-
cendancy, introduced by Lung, et al., [24] to direct the
search performed by extremal optimization towards
a Nash Equilibrium point. This relation enables the
comparison of two solutions in Nash sense and deter-
mines which solution is closer to an equilibrium. The
use of this relation reduces the computational com-
plexity of the search in comparison with the determin-
istic Nash equilibrium relation [24]. In [23], Nash as-
cendancy relation is defined for two non-overlapping
community structures. By extending this relation to
overlapping community structures, community struc-
ture D precedes P in Nash sense, if there are more
number of players who prefer D over P :

ζ(D,P ) > ζ(P,D), (12)

where ζ(D,P ) is the number of players who prefer
their communities assignments in community struc-
ture D over P . More formally, ζ(D,P ) is defined as

ζ(D,P ) = |{i | ui(D) > ui(P )}|, (13)

where |S| denotes cardinality of set S. In other words,
if D Nash ascends P , there are fewer number of play-
ers iwho can increase their payoffs by switching from
Ci(D) to Ci(P ) than vice-versa and as a result, D
seems more stable than P , in Nash-sense.

3.2 Extremal Optimization Over Overlap-
ping Community Detection Game

Assume initially each player resides in a singleton
community. Community structure D is initialized as
the set of all these singleton communities. Our pur-
pose is to evolving D through some number of iter-
ations and favoring the one which is more stable in
Nash-sense by employing extremal optimization.

In contrast with OCEO which the focus of each
iteration is to evolve the obtained community struc-
ture, Game [8] aims to improve the current strategy of
a random node, in each iteration. This approach for
reaching a local equilibrium, is the main reason be-
hind Game’s long running time. This process repeats
until no node can improve itself for a long number of
iterations. The uperbound for this recurrence is of the

order of O(m2) which explains the slow convergence
of Game.

Intuitively by giving the turn to a Player iwith the
least payoff in particular community ci ∈ Ci(D) to
perform some actions, that player is provided a chance
to improve its total payoff by leaving ci or joining a
new community available on its strategy space. We
define pairs of <i, c>, in which i is a player who be-
longs to community c. In case of overlapping commu-
nity structure, there are multiple pairs of <i, ·>. In
our method, we rank such pairs <i, ·> according to
their corresponding ui(·) and keep all the sorted pairs
in a pairs-pool. Thus, the first ranked pair corresponds
to a player who has the least payoff in the associated
community. In each iteration, γ pairs are chosen based
on a selection mechanism from the pool.

For each selected pair<i, c>, player i tries to im-
prove its payoff by joining a new community or leav-
ing c. In our selection mechanism, we naturally favor
pairs with the lower payoff. We apply truncation se-
lection in which the γ top-ranked pairs are selected
from the pool. Within the selected set of pairs there is
no further selection and all the corresponding players
have a chance to take action.

To avoid early convergence, when the best solu-
tion has not been updated for η iterations, we switch
from truncation to tournament selection method for
the next iteration which we call that an impulse iter-
ation. A tournament consists of picking δ (known as
tournament size) pairs from the pool using a uniform
distribution probability. The winner of the tournament
is the one with the lower value of payoff. Choosing γ
pairs requires running γ tournaments. The selection
pressure is adjusted by the tournament size. Small as-
signment of δ brings in more randomness in the se-
lection process and the pure randomness occurs when
δ = 1. On the other hand, larger value of δ results
in more selection of worst-payoff pairs which con-
tradicts with our initial purpose of employing tourna-
ment selection. In our method, η = 5 and δ = 3 work
the best.

OCEO proceeds as follows to evolve the single
community structure D:

1. Community structures D and P are initialized
as each player resides in a singleton community.
Community structure P is used to store the best
D found in each iteration.

2. The payoffs of players, in each community they
reside, belonging to community structure D are
computed.

3. Pairs of<i, c> are sorted according to the payoff
of player i in c and are maintained in the pairs-
pool.
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4. γ pairs are chosen from the pairs-pool based on
truncation selection. The selection method is
switched to tournament selection if it is an im-
pulse iteration. For each selected pair <i, c>
Player i, performs the following actions:

• Considering both cases of staying in or
leaving c, calculates its possible total pay-
off for each community in its strategy
space. It joins the one which leads to the
maximum payoff higher than the current ui.

• Leaves c, if this actions results in a higher
total payoff.

The selected players, by performing actions,
modify the community structure D. Note that
the proposed algorithm is also capable of detect-
ing non-overlapping communities. In this case,
Player i, joins community c′ ∈ AC(i) and leaves
c, if ui(c′) > max(ui(c), ui(c

′′)), for ∀c′′ ∈
AC(i) \ {c′}

5. If the resulting D Nash-ascends P , P is replaced
by D. This replacement implies that the result-
ing D is the best solution found so far. Other-
wise, D keeps performing the search without be-
ing stored.

6. Steps 4-5 are repeated until either the maximum
number of iterations is reached or P has not been
updated for ψ iterations after the last update.
Upon termination, highly overlapped communi-
ties in the community structure P will be merged
together and it is returned as the solution. In our
method, two communities are considered highly
overlapped if the division of common nodes to
the size of smaller community exceeds 70%.

In step 4, after players’ movements, payoffs of all in-
volved players need to be recalculated. When a Player
i joins/leaves community c, the payoffs of all players
residing in c should be updated according to Equa-
tion 7, and the pair <i, c> should be inserted/deleted
to/from the pairs-pool. In each iteration, the aver-
age number of players whose payoffs are imposed
to change is γ|c|, where |c| is the average number
of players in one community. Payoffs of all other
players remain unchanged. In our method, we limit
the players to reside in at most κ communities at the
same time. Consequently, the maximum size of the
pairs-pool is κ|V | and the complexity of keeping the
pairs-pool updated, in each iteration, is of the order
of O(γ|c| logκ|V |) where in the worst case, γ|c| is of
the order of O(|V |). The pseudocode of the explained
process is presented in Algorithm 1.

3.3 Parameter Settings

There are a number of parameters whose values can
have a considerable influence in the performance of
the algorithm.

• Number of selected players (γ): This parame-
ter determines the number of players who are
provided the chance to play simultaneously and
change their strategies, in each iteration. The
higher the size of a network, the greater number
of players are selected to play. Thus, parameter
γ should be proportional to the size of network.
In an ideal situation, no pair of selected play-
ers should be adjacent. For clarification, assume
two selected players i and j are adjacent who re-
side in communities c1 and c2, respectively. Ob-
viously, c2 appears in the strategy space of the
player i and may persuade i to join c2. Further,
assume upon the joining of i to c2, in the mean-
time, j leaves c2. In this case, however rare, i’s
payoff estimate would be impaired, since i re-
lies on the current strategy of its adjacent players.
More nodes are adjacent to each other when the
network possesses a high average degree. Thus,
the number of selected players should be related
to both size of network and also the average de-
gree of nodes:

γ =
N

k̂
. (14)

• Max-Iteration: As shown in Algorithm 1, the
game is repeated until either the maximum num-
ber of iterations reaches or the best solution ob-
tained, does not get updated for ψ iterations. We
set the Max-Iteration and ψ to 2000 and 100, re-
spectively.

3.4 OCEO Complexity

Let k̂ be the average degree of players in a network.
Then, the time complexity O(γk̂) is required for γ
players to search through their strategy spaces and
find the best communities to join. As stated above,
the complexity of efficiently updating the pairs-pool
is of the order of O(|V | logκ|V |). Further, in each iter-
ation, for determining the Nash-ascendency relation,
payoff of each involved player in the dummy and par-
ent communities need to be compared which results in
O(|V |) comparisons. Therefore, in overall, the com-
plexity of OCEO is of the order of O(MAX-Iteration
×|V | logκ|V |).
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Algorithm 1 Overlapping Community Detection
Game

1: Initialize P andD as each player resides in a sin-
gleton community

2: for each player i ∈ V do
3: for each community c ∈ Ci(D) do
4: ui(c)← qi(c)

ki
5: end for
6: end for
7: Sort pairs <i, c> with respect to ui(c) and keep

them in the pairs-pool
8: temp← 0, iteration← 0
9: while iteration < MAX-Iteration do

10: if temp > 5 then
11: Pick and evict γ pairs from the pairs-pool

based on tournament selection
12: else
13: Pick and evict γ pairs from the pairs-pool

based on truncation selection
14: end if
15: for each selected pair <i, c> do
16: Player i, Considering both cases of stay-

ing in or leaving c, joins c′ ∈ AC(i), if this action
leads to the maximum total payoff, higher than
the current ui.

17: Leaves c, if this actions results in a higher
total payoff.

18: end for
19: Recalculate payoffs of involved pairs and up-

date the pairs-pool
20: if D Nash-ascends P then
21: D ← P
22: temp← 0
23: else
24: temp← temp+ 1
25: end if
26: if temp ≡ ψ then
27: break
28: end if
29: iteration← iteration+ 1
30: end while
31: Merge highly overlapped communities
32: return P

3.5 Resolution Limit and the solution mech-
anism

Modularity optimization is one of the most popular
methods for community detection. However it fails to
detect smaller communities than some scale and tends
to merge such communities to gain a higher modu-

larity value. This phenomenon, known as resolution
limit, merges two connected communities c1 and c2
when d(c1)× d(c2) < 2m [26]. In fact, modularity is
a sum of terms and it establishes a trade-off between
number of terms (which corresponds to the number of
communities) and magnitude of each term.

Fortunato, et al. [13] designed a network, known
as ring network, which consists of identical cliques as
modules connected by single edges to two other mod-
ules to manifest the drawback of modularity optimiza-
tion. Ring network, shown in Fig.1a, has a clear mod-
ular structure where each community corresponds to
a module/clique. The expectation is that any commu-
nity detection algorithm, including a modularity op-
timization method extracts the true community struc-
ture. However, in this type of network, if the number
of modules exceeds

√
m, the modularity optimization

fails to extract each module as one community and
merges two or more modules together to increase the
modularity value.

For illustration purposes, we consider a ring net-
work with 50 modules where each module is a com-
plete graph K4. As can be computed, this network
has 200 nodes and 350 edges and the number of mod-
ules exceeds

√
m. Fig.1b exhibits a closer view of

two arbitrary connected modules of this network. A
simplistic modularity optimization mechanism suffers
from resolution limit and fails to detect the true mod-
ular structure. It finds a partition in which modules
are merged together into groups of two, leading to the
maximum modularity value (represented with dotted
lines).

In our method, this issue is addressed and the al-
gorithm is capable of identifying each module as one
community. In this network, combining two or more
modules together into one community would increase
the modularity value. Therefore, there should exist
some number of players who make more contribution
to the modularity value and also gain a higher payoff
upon the merger. Remember that the payoff of each
player is the contribution of that individual rescaled
by the degree of that player. Considering the two mod-
ules as separate communities, in Fig.1b, contribution
of each player {2, 3, 6, 7} to modularity is all the same
and equal to q{2,3,6,7} = 3 − 3×14

2×350 = 2.94. Accord-
ingly, for the players {1, 4, 5, 8}, it is equivalent to
q{1,4,5,8} = 3 − 4×14

2×350 = 2.92. By merging these
two modules together, the first set of players including
Players 1 and 8 experience a drop in their contribution
to the modularity (and also their payoffs) since non of
them have an edge to another module while the sum
of degree of the players in the resulted community has
increased (an increase in the second term of Equation
5). In this case q{2,3,6,7} = 3 − 3×28

2×350 = 2.88 and
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q{1,8} = 3 − 4×28
2×350 = 2.84. On the other hand, two

Players 4 and 5 make a higher contribution due to the
existence of an edge connecting them, which is equal
to q{4,5} = 4− 4×28

2×350 = 3.84. The whole point is that
the increase in the contribution of Players 4 and 5 are
greater than the loss of other players which leads to a
higher global modularity and as a result, the merger
of the two modules. However, OCEO is capable of
detecting all modules as communities, despite the fact
that true community structure has the lower modular-
ity value. The mechanism to resolve this issue is em-
bedded in Nash ascendancy relation where the pref-
erences of all individuals are taken into account, re-
gardless of magnitude of the change in their payoffs
or contributions to the modularity value. According
to Equation 13, the true community structure Nash
ascends the one with the pairs of adjacent modules
as communities since there are fewer number of play-
ers who prefer the false community structure. Funda-
mentally, the true partition is inherently more stable
in Nash sense. Hence, the Nash ascendancy relation,
in addition to directing the game to the Nash equilib-
rium point, resolves the resolution limit in OCEO by
considering the preferences of majority of players.

3.6 OCEO on Dynamic Networks

The dynamic network Gd = {G1, G2, ..., Gt} is de-
fined as a set of network snapshots evolving over time.
Each Gi is a snapshot of the network Gd at timestep
i. The problem of community detection in a dynamic
network is to detect the community structure at each
timestep by using the extracted one of the previous
snapshot.

In [23], when detecting changes, NEO-CDD
reinitializes community structure P while keeps D
unchanged. By keeping D unchanged, the informa-
tion from the community structure of the previous
snapshot is utilized. However, a wiser approach is to
swapD and P and then perform the above-mentioned
process. In this way, we resume from the best found
community structure of the previous snapshot and
then adapt it to recent changes. Further, in contrast
with NEO-CDD which initializes P by randomly dis-
tributing nodes to a predefined number of communi-
ties, OCEO assigns each node to a singleton commu-
nity.

4 Experimental Results

In this section, we compare the effectiveness of OCEO
on both synthetic and real-world networks with other
community detection algorithms. In the following, we
describe datasets, metrics and analysis.

(a)

(b)

Figure 1: (a) A network of identical cliques as com-
munities connected by single edges, known as ring
network. Each clique is a complete graph of size m,
i.e., Km. If the number of cliques exceeds

√
m, mod-

ularity optimization merges each pair of connected
cliques and introduce it as a community (represented
by dash lines) (b) A closer view of a ring network with
m = 4.

4.1 Datasets

Synthetic Networks: Lancichinetti, et al., present a
benchmark (LFR benchmark) for community detec-
tion algorithms [21]. The LFR benchmark gener-
ates static networks with built-in community struc-
ture. The configuration of generated networks de-
pends on various user-specified parameters. Number
of nodes is N , k specifies the average degree of nodes
and kmax is the upper bound on degrees of nodes. The
mixing parameter µ is the fraction of edges that a node
has to the nodes outside of its community. Therefore,
as we decrease µ we obtain a clear set of communities
with fewer number of inter-edges. Later, the authors
adapted the LFR benchmark to generate overlapping
communities [20]. ParameterOn specifies the number
of overlapping nodes and Om controls the number of
membership of such nodes.

Real-world Networks: We present the perfor-
mance of OCEO on several real-world complex net-
works with the absent of ground-truth communities:
Zachary’s karate club [41], Jazz musician network
[14] and C. elegans metabolic network [11].

Metrics: Investigating the effectiveness of com-
munity detection algorithms involves defining a sim-
ilarity measure between the extracted community
structure and the partition one wishes to discover.

The most popular measure to compare the simi-
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(a) (b)

(c) (d)

Figure 2: a) NMI of OCEO, Game, EO and CNM in the presence of small built-in communities. b) Comparison
among OCEO, EO and Game based on average NMI for detecting non-overlapping communities. Higher NMI
value indicates closer proximity to the ground-truth communities. c) Comparison among OCEO, AFOCS and
Game for detecting overlapping communities d) NMI of OCEO and AFOCS over a network evolving through four
snapshots

larity between the delivered community structure and
the ground-truth communities is Normalized Mutual
Information (NMI). We have used an implementation
1 of NMI measure made available by McDaid, et al.,
for sets of overlapping communities [25]. Further, we
use modularity value of obtained community struc-
tures and number of identified communities as ad-
ditional measures when the ground-truth community
structure is unknown. For each dataset, we run OCEO
25 times due to the non-deterministic aspect of the
game and report the average values of NMI or modu-
larity.

4.2 Analysis

In the first experiment we show the effectiveness of
our method for resolving the resolution limit prob-
lem on the LFR benchmark graphs with implanted
non-overlapping communities where mixing parame-
ter varies in the interval of [0.1, 0.4]. The networks
consist of 1,000 nodes and 5,000 edges where degree
of each node is exactly set to 10, and the size of each
built-in community is 10.
These networks meet the resolution limit condition

1https://github.com/aaronmcdaid/Overlapping-NMI

wherein d(c1) × d(c2) < 2m for any pair of adja-
cent communities, c1 and c2. A strict modularity op-
timization method fails to resolve the small commu-
nities which were unambiguously defined. We com-
pare our method with three modularity optimization
methods: EO [11], Game [8] and CNM [9]. The re-
sults in Fig.2a, implies that EO and CNM fail to de-
tect the important substructure of the network. In the
meantime, OCEO achieves a significantly better result
and also outperforms Game. Among all these meth-
ods EO achieves the highest modularity by merging
most communities into groups of two.

For investigating the performance of OCEO in
detecting non-overlapping communities, we contrast
OCEO with the following methods: Game, AFOCS
and CNM. The first two algorithms are also capable
of detecting overlapping communities as well as non-
overlapping ones. However for the purpose of this ex-
periment, the overlapping aspect is disabled. We com-
pare these methods for the increasing range of mix-
ing parameter values in networks of n=5000 where
〈k〉 = 50. The size of implanted communities lies
between 50 and 200. As can be seen in Fig.2b, EO
and OCEO are very competitive and both are far bet-
ter than Game in detecting ground-truth community
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Dataset Size QOCEO QEO |COCEO| |CEO|
Zachary 34 0.39± 0 0.42± 0 5.8± 0.44 4± 0

Jazz 198 0.41± 0 0.44± 0 5± 0.17 3.8± 0.12

C. elegans 453 0.40± 0 0.44± 0 13± 0.90 9.3± 0.80

Table 1: Modularity and number of communities obtained by OCEO and EO on different real-world complex
networks

structures.
Further, we extend our experiments to examine

the efficiency of our method on identifying overlap-
ping communities in static networks. Fig.2c displays
the performance of OCEO, Game and AFOCS over
networks of n = 1000, m= 7368 and 〈k〉 = 15. The
x-axis presents fraction of nodes belonging to multi-
ple communities in the corresponding networks with
mixing parameter µ = 0.1. OCEO and Game clearly
outperforms AFOCS in detecting overlapping com-
munity structures. In this experiment the overlapping
threshold is set to 0.6 for OCEO and AFOCS.

We next observe the performance of OCEO on
dynamic networks in comparison with AFOCS. The
synthesized network used for this experiment is gen-
erated by the LFR benchmark with n = 5000, m =
147324, wherein 10% of nodes are overlapping. The
network is evolving through four snapshots where
each of which comprises 25% of data. The results are
presented in Fig.2d. As expected, both methods ob-
tain increasing values of NMI as the network evolves
and perform very well by achieving NMI values being
above 85% when received the last snapshot.

In Table 1, we present the performance of OCEO
on three real-world complex networks with the ab-
sence of ground-truth communities: the Zachary’s
karate club, Jazz musician network and C. elegans
metabolic. We have run OCEO and EO for 25 tri-
als and for the sake of comparison each node resides
exactly in one community. According to these results,
compared to EO, OCEO is capable of identifying a
greater number of communities and at the same time
achieving a high modularity value.

5 Conclusion

In this paper, we have proposed a game-theoretic
method, OCEO, to detect communities in complex
networks. Nodes as players try to maximize their pay-
offs by choosing one or more communities to join.
The payoff of players, in their communities is propor-
tional to their contributions to the modularity value
Q. Therefore, global modularity is optimized through
the iterations, while players improve their payoffs,

and the game is propelled to converge to a Nash-
equilibrium point among the players. The choice
of individuals’ payoff function and also the way the
game drags itself to a Nash-equilibrium resolve the
major issue of modularity optimization, resolution
limit and distinguish our method from strict modu-
larity optimization. Experimental results demonstrate
the effectiveness of OCEO, in terms of obtaining high
values of NMI and modularity from both synthetic and
real-world networks in a reasonable time.

References:

[1] D.S. Bassett, M.A. Porter, N.F. Wymbs, S.T.
Grafton, J.M. Carlson, and P.J Mucha, Robust
Detection of Dynamic Community Structure in
Networks, Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science, Vol.23, No.1, 2013,
p. 013142.

[2] S. Boettcher and A. Percus, Nature’s Way of Op-
timizing, Artificial Intelligence, Vol.119, No.1,
2000, pp. 275–286.

[3] S. Boettcher and A.G. Percus, Extremal Opti-
mization: Methods Derived from Co-evolution,
Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation, Vol.1,
1999, pp. 825–832.

[4] U. Brandes, D. Delling, M. Gaertler, R. Görke,
M. Hoefer, Z. Nikoloski and D. Wagner, Max-
imizing Modularity is Hard, ArXiv Preprint
Physics/0608255, 2006.

[5] O. Candogan, A. Ozdaglar and P.A. Parrilo,
Near-potential Games: Geometry and Dynam-
ics, ACM Transactions on Economics and Com-
putation, Vol.1, No.2, 2013, p. 11.

[6] D. Chakrabarti, R. Kumar, and A. Tomkins, Evo-
lutionary Clustering, Proceedings of the 12th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2006,
pp. 554–560.

[7] J. Chen and B. Yuan, Detecting Functional Mod-
ules in the Yeast Protein–protein Interaction
Network, Bioinformatics, Vol.22, No.18, 2006,
pp. 2283–2290.

E. Havvaei, N. Deo
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 322 Volume 1, 2016



[8] W. Chen, Z. Liu, X. Sun and Y. Wang, A Game-
theoretic Framework to Identify Overlapping
Communities in Social Networks, Data Mining
and Knowledge Discovery, Vol.21, No.2, 2010,
pp. 224–240.

[9] A. Clauset, M.E. Newman and C. Moore, Find-
ing Community Structure in Very Large Net-
works, Physical Review E, Vol.70, No.6, 2004,
p. 066111.
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