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Abstract: Global climate change will induce changes in rainfall patterns and increase in rainfall events and 

consequently increase rainfall erosivity. In this study, simulating future rainfall erosivity was considered under 

different statistical downscaling model (SDSM) scenarios in the North of Iran. Rainfall erosivity (R-factor) 

until the end of the 21st century and during the current period were compared under four scenarios. With regard 

to regression equation between R-factor and daily rainfall, annual rainfall and modified fournier index (MFI), it 

was found that annual rainfall and R-factor had the highest correlation (R2=0.812) and thus, it was extended for 

future periods. Annual rainfall erosivity in the Kasilian watershed indicated a high degree of variability from 

year to year (139 years of study), ranging from 302 to 693 MJ ha−1mmh−1. Although, in the early 21st century 

and at the end of it, rainfall erosivity is greater than the mid-21st century, rainfall erosivity will be higher than 

the current period in all studied periods. Current rainfall erosivity was 388.18 MJ mm ha-1 h-1 y-1, which, under 

the effect of climate change will be increased 6-31% under the HadCM3 scenario and rainfall mean will 

increase 2-5%. The results reveal that rainfall with extreme intensity and less duration will occur. The spatial 

interpolation method indicated that the R-factor will increase towards the highlands, therefore, future rainfall 

erosivity changes will have significant impacts on soil and water resources in the North of Iran. 
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1 Introduction 
The rainfall erosivity, whose concept were 

developed by Wischmeier and Smith [1], describes 

an interaction between the kinetic energy of 

raindrops and the consecutive 30-min maximum 

rainfall intensity during the storm the soil surface 

indicating. Rainfall erosivity is one of the key input 

parameters for (R) RUSLE modeling that was first 

calculated by Wischmeier and Smith [1]. All factors 

required for calculating rainfall erosivity are under 

the effect of rainfall patterns. Any changes in 

precipitation, whether in amounts of rainfall 

intensity, rainfall frequency, spatial extent, duration, 

and timing of extreme weather may directly 

influence rainfall erosivity and erosion rates [1,2,3]. 

Global precipitation has changed under climate 

change [4]. Climate change lead to changes in 

climate variables such as precipitation, 

temperatures, windiness and solar radiation [5], 

which affect rainfall erosivity in a variety of ways. 

One of the most direct impacts of climate change is 

the change in the erosive power of rainfall [6].   

In order to investigate the effects of climate 

change and different scenarios on rainfall erosivity, 

several studies have been conducted which indicate 

climate change has a direct impact on rainfall 

characteristics and it will lead to increase in rainfall 

erosivity in future [7,8,9].  

Research has been conducted to assess future 

changes in R-factors based on Global Climate 

Model (GCM) outputs [5]. GCM outputs cannot 

provide rainfall characteristics which are able to 

directly estimate rainfall erosivity. Therefore, in 

many of the studies in the literature, by regression 

relationship between annual rainfall, monthly 

rainfall or daily rainfall of GCM outputs and rainfall 

erosivity, the researchers could simulate rainfall 

erosivity condition in future [10,11].  

Although these models are very useful in the 

investigation and predictions climate change in 

future, the current versions of GCMs are according 

to a large grid scale from 250 to 600 km [12] and 

unable  to resolve important sub-grid scale features 

Under certain conditions such as clouds and 

topography [13].  

To overcome this problem, downscaling methods 

have developed as a means of connecting regional-

scale atmospheric predictor variables to local-scale 

surface weather so that the local scale is defined as 

0–50 km and the regional scale as 50*50 km [14]. 

Among these downscaling models, the Statistical 

Downscaling Model (SDSM) has been used widely 
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to generate climate data such a precipitation and 

temperature throughout the world [13,15,16]. 

The objectives of this study were to investigate 

the adaptability of SDSM for downscaling 

precipitation in the Kasilian watershed and simulate 

future rainfall erosivity change in the Kasilian 

watershed.  

 

 

2 Study area and data description 
2.1. The case-study area 

The target area of this study was the region 

surrounding the Caspian Sea (Fig. 1), located at 

53°01' to 53°26' E and 35°01' to 36°32' N containing 

Shirgah city, Zirab city in Mazandaran Province and 

it is drained by the Talar River and its tributaries. It 

has a spatial extent of almost 342.86km2 and a mean 

altitude of 1080m. Climate is characterized by 

extreme wet (summer) and dry (winter) seasons 

with 95% of its annual rainfall occurring between 

the months of September and June. Mean annual 

rainfall varies from 600 mm to 110 mm across the 

catchment with higher rainfall occurring in the plain 

areas. The average annual temperatures range from 

18ºC on the plain areas to 10ºC in the mountains. 

The study area is composed of a variety of land 

cover types, mainly forest (82.2%), and remainder 

of the study is 14% rangeland, 2.4% settlement and 

1.4% agricultural. The soil in this basin is primarily 

of podzolic, brown forest and sedimentary types. 

The Kasilian is sensitive to environmental change. 

Soil loss in the Kasilian has been caused by both 

natural factors and human activities and has been a 

critical issue during the past few decades. 

 

 

 
Figure 1: Location, boundary, and watershed in the 

North of Iran. 

 

2.2. Data description 
The historical observed daily precipitation data 

covering 1961–2000 from 6 Iran Water Resource 

Management Company (IWRMC) stations were 

used in this study.  

The predictors which are large-scale atmospheric 

field data are divided into two groups that included 

observed predictors and modeled predictors. 

National Centers for Environmental Prediction 

(NCEP)/National Center for Atmospheric Research 

(NCAR) reanalysis gridded data sets and (GCMs 

simulated gridded data) from the grid box of the 

predictor dataset closest to the study area were 

observed predictors and modeled predictors, 

respectively.  

 

3 Methods 
3.1. Rainfall erosivity 
The rainfall erosivity according to Daily rainfall 

(EI30) in the RUSLE model is obtained through the 

R-factor quantifying the effect of kinetic energy of a 

rainfall event and its maximum 30- minute intensity 

(eq. 1):  

𝑅 =
1

𝑛
∑ [∑ 𝐾𝐸(𝐼30)]

𝑚
𝑘=1

𝑛
𝑖=1                    (1) 

Where R is rainfall erosivity (MJ mm ha-1 h-1 y-1), 

KE is total kinetic energy of each index (MJ ha-1), 

𝐼30 is the maximum intensity of 30-minute rainfall 

(mm h-1).  

The kinetic energy of each index is calculated 

through Wischmeier and Smith equation [1] (eq. 2): 

𝐾𝐸 = (11.98 + 8.73𝑙𝑜𝑔10𝐼)                   (2) 

There were only a limited number of rainfall register 

stations in Kasilian watershed and its surrounding 

that makes the rainfall erosivity calculation difficult. 

So, in order to overcome this defect, the monthly 

and annual average rainfall amounts have been used 

to estimate R-factor by Renard and Freimund [17] 

equation resulted from Wischmeier studies. Hence, 

after determining the desired stations, the monthly 

and annual rainfall was achieved. In the next step, 

Fournier index and R-factor were obtained for all 

rain gauge stations in the Kasilian watershed using 

equation (3). 

𝐹 =
∑ 𝑃𝑖212
𝑖=1

∑ 𝑃12
𝑖=1

                           (3) 

Where Pi is the average rainfall (mm) and p is the 

annual average rainfall (mm). 

Fournier index equation was calculated for the 

stations with rain gauge. In the next step, there was 

a relationship between the values resulted from 

Fournier index and rainfall erosivity index. Finally, 
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the rainfall erosivity map in Kasilian watershed was 

prepared using the interpolation method in ArcGIS 

10.3 software.  

 

3.2. Climate change scenarios 
In order to investigates the impact of climate change 

and different scenarios on rainfall erosivity in 

future, climate variables such as precipitation and 

temperature are predicted under the change of local 

climate at basin scale that are due to modification of 

the general circulation in the atmosphere. Global 

Climate Model (GCM) outputs were used. The 

transformed GCM data for 1961–2099 was directly 

downloaded from the Internet (http://ccds-

dscc.ec.gc.ca). Then, the simulation of future 

rainfall erosivity was calculated based on those 

climate change scenarios.  

3.3. Description of SDSM 
The Statistical Downscaling Model (SDSM) is 

developed by Wilby [13], which is an integration of 

Stochastic Weather Generator (SWG) and Multiple 

Linear Regression (MLR) for generating future 

climate scenarios to assess the impact of global 

climate change. The SDSM modeling of daily 

precipitation consist of step-wise process: modeling 

precipitation occurrence followed by modeling of 

precipitation amounts while precipitation occurs 

[18]: 

𝑂𝑖 = 𝛼0 +∑ 𝛼𝑗𝑝𝑖𝑗
𝑛
𝑗=1                           (4) 

𝑅𝑖
0.25 = 𝛽0 + ∑ 𝛽𝑗𝑝𝑖𝑗 + 𝑒𝑖

𝑛
𝑗=1               (5) 

Where 𝑂𝑖 is the daily precipitation occurrence, 𝑅𝑖  

is daily precipitation amount, 𝑝𝑖𝑗 are predictors, 𝑛 is 

number of predictor, 𝛼 and 𝛽 are model factors and 

𝑒𝑖 is modeling error. 

The main procedures of the SDSM for downscaling 

wet precipitation (predictands) contains four parts: 

(1) identification of predicts and predictors; (2) 

model calibration; (3) weather generator; (4) 

generation of future series of climate variable. In 

this study, the large-scale predictors for the 

meteorological prediction signing the SDSM model 

were used according to NCEP outputs in calibration 

step, as well as A1B and A2 for CGCM3, A2 and 

B2 for HadCM3 model for future generation. 

A simulation of mean monthly rainfall during the 

calibration and validation of the SDSM were 

checked by using the coefficient of correlation (R) 

and root mean square error (RMSE). 

 

 

4 Result and discussion 
Results of the relationship between rainfall erosivity 

index and Fournier index, daily rainfall and annual 

rainfall rate based on 598 events show that the best 

fit between rainfall erosivity and annual 

precipitation was obtained with a power law 

equation (𝑅2=0.812) so it can be used for the 

stations without rain gauge using the obtained 

equation and based on Table 1, R-factor did not 

correlate with other factors. 

 

Table 1: Relationship between rainfall erosivity 

index and Fournier, Daily and annual precipitation. 

Rainfall erosivity  Equation  R2 

Fournier index 𝑦 = 0.98𝑥 + 6.75 0.25 

Daily rainfall 𝑦 = 0.007𝑥 + 0.29 0.34 

Annual rainfall 𝑦 = 0.0169𝑥 + 1.14 0.812 

 

4.1. Calibration and validation of SDSM 
The Statistical Downscaling Model was first 

calibrated using large-scale predictor variables of 

the current climate condition derived from the 

NCEP reanalysis dataset as driving data, and then 

validated in an independent time period using NCEP 

data [15].  

In order to observed data series for 1961–1990 were 

divided into two periods, 1961–1980 and 1981–

1990, used for model calibration and validation, 

respectively. The monthly precipitation of the six 

climatic stations shows in table 2 during the 

calibration period.  

 

Table 2: Performance assessment of the Statistical 

Downscaling Model during calibration (1961–1990) 

for precipitation, in theKasilian watershed. 

SE (mean) 𝑅2 (mean)  Station 

0.387 0.283 Darzikola 

0.236 0.45 Sangdeh 

0.204 0.616 Rigcheshmeh  

0.3 0.319 Shirgah 

0.194 0.68 Kaleh 

0.212 0.55 Talar  

To validate the SDSM model, five sets of 

atmospheric data were used, i.e., from NCEP, as 

well as scenarios A2 and B2 from HadCM3 model, 

A1B and A2 for CGCM3.  
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4.2. Change of Future precipitation 

downscaling scenarios  

In this study, the generated of precipitation was 

divided into basis period (1961-1990) and future 

period 2020s (2010-2039), 2050s (2040-2069), and 

2080s (2070-2099). In fact, the pattern of change 

under future precipitation scenarios were analyzed 

using H3A2, H3B2, CGCA1 and CGCA1B data 

compared to basis period.  

The changes of mean precipitation in Kasilian 

watershed under scenarios H3A2, H3B2, CGCA1 

and CGCA1B would present obvious differences in 

different periods. Furthermore, rainfall changes in 

future years are under the effect of different 

scenarios and spatial distribution of stations.  

The results indicated rainfall mean in all stations 

was 833 mm in current period so that for CGCM3 

scenarios, rainfall mean is less than the current 

period. The results showed in the first simulating 

period, rainfall mean was more than current period 

which H3A2 and H3B2 scenario, rainfall mean was 

8% and 11% more than current period, respectively. 

However, in the second and third simulating periods 

and most of the scenarios, the amount of rainfall 

will decrease compared to current period.  

Generally, under H3A2 and H3B2 scenarios, rainfall 

mean will increase 2% and 5% compared to current 

period, respectively. However, under CGCM3A1 

and CGCM3A1B scenarios, rainfall mean will be 

4% and 8% less than current period.  

4.3. Change of current and Future rainfall 

erosivity under downscaling scenarios  
Figure 2 presents rainfall erosivity and its changes 

the region during the three future periods under the 

different scenarios. The range annual R-factors 

varied between 302 and 693 MJ mm ha-1 h-1 y-1from 

site to site during 1961-2099. The smallest R-factors 

(302 MJ mm ha-1 h-1 y-1) concerns Darzikola station 

and current period. The maximum value (693 MJ 

mm ha-1 h-1 y-1) was calculated in Talar station and 

H3A2 (2020s).  

Rainfall erosivity variation in the current period 

(1961-1990) in the study region was equal to 388 

MJ mm ha-1 h-1 y-1, whereas rainfall erosivity in 

future periods has become much more than current 

period. Rainfall erosivity variations in 2020s and 

2080s were close to each other and in 2050s it will 

be much less. In fact, it is expected that, in mid 21st 

century, less erosivity will occur than early and late 

21st century.  

However, Zhang et al. [11] have announced the 

most rainfall erosivity in China will take place 

according to A2 and A1B scenarios. The results 

indicated rainfall erosivity mean in all scenarios and 

the first simulating period was 466.78 MJ mm ha-1 

h-1 y-1 which shows 28% increase in rainfall 

erosivity in this period.  

This condition shows 9% and 21 % increase for the 

second and third simulating periods, respectively. 

However, rainfall mean in H3A2 (8%) and H3B2 

(11%) was more than current period. In other words, 

a little change in rainfall will lead to great change in 

rainfall erosivity. Also, Plangoen and Babel [19] in 

Thailand have announced 2% and 7% increase in 

rainfall in 2011-2040 and 2071-2099 will lead to 5% 

and 14%   increase in rainfall erosivity. It seems that 

the change of rainfall pattern was one of the most 

important effects of climate change so that the 

rainfall with extreme intensity and less duration has 

occurred and consequently, rainfall erosivity will 

increase in future.  

 

 
Figure 2: Comparison of rainfall erosivity in current 

and future periods under climate change scenarios 

 

4.4. Spatial distribution of rainfall erosivity 

in current and future period 
The spatial rainfall erosivity in current and future 

periods under different climate change scenarios is 

presented in figure 3.  

Overall, the R-factors gradually increased from the 

south east to the north west of the watershed. The 

values were less than 277 MJ mm ha-1 h-1 y-1 in 

Current period and more than MJ mm ha-1 h-1 y-1 in 

future period and H3B2 (2020s) scenario. This 

condition is completely related to rainfall in the 

region so that the amount of rainfall increases from 

Highland toward plain areas. 

The result of rainfall erosivity zoning in future 

climate indicates the R-factors of the Kasilian for 

each of the three future periods increased when 

compared to the current period. Nearing et al. [4], 

have been confirmed the trend of increase rainfall 

erosivity.  
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Figure 3: Spatial distribution for rainfall erosivity in 

current period (1961-1990) and future periods 

(2010-2039, 2040-2069 and 2070-2099) 

5 Conclusion  

In this study, it was assessed the expected impacts 

of future climate change on rainfall erosivity in the 

Kasilian watershed. According to the obtained 

results, rainfall erosivity will increase in future 

climate. These changes have rather close 

relationship with the rainfall in the region so that 

rainfall means under scenarios H3B2 and H3A2 and 

for all periods will increase 2% and 5% in 

comparison to current period, respectively. Despite 

little increase in rainfall, rainfall erosivity value will 

increase to a rather great extent. That is, rainfalls 

with more intensity and less duration will occur in 

future climate. As far as spatial erosivity changes 

are concerned, the results of this study indicate 

rainfall erosivity will move to highlands in future 

climate. With regard to decrease in land cover 

density in highlands, it is expected that soil erosion 

hazard will increase since with an increase of 1% in 

the rainfall erosivity, soil erosion rates increase by 

0.8 to 1 percent.  
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