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Abstract: - A generalized minimum variance controller is developed for servo application for multiple input 
and multiple output systems having time-varying dynamics.  The plant to be controlled is a controlled 
autoregressive moving average model and the control objective is to minimize a generalized minimum variance 
performance index that is an extension of the standard index from linear time invariant cases for linear time-
varying applications. 
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1 Introduction 
The multiple input and multiple output (MIMO) 
generalized minimum variance controller (GMVC) 
was developed by Koivo [1] for linear time-
invariant (LTI) systems extending the GMVCs from 
LTI single input and single output (SISO) plants [2], 
[3] for MIMO systems.  The GMVCs are popular 
controllers for adaptive control and have been 
extended from transfer function framework to state 
space models for LTI systems [4].  They have also 
been applied for DC motor control in order to 
replace the classical PID control for optimal control 
for industrial applications [5-7].  The LTI MIMO 
GMVC was developed using a pseudocommutation 
technique for overcoming noncommutativity of 
MIMO transfer functions with respect to 
multiplication.  The LTI MIMO GMVC is very 
flexible and has all the standard features of an LTI 
SISO GMVC.  The performance index of the 
GMVC includes both a variance of tracking error 
from a filtered plant output and a quadratic function 
of filtered input.  It compromises between the 
tracking error and the fluctuation of the input. 

The standard LTI SISO GMVC [2], [3] has also 
been extended from LTI SISO plants for linear time-
varying (LTV) SISO systems based on a different 
pseudocommutation technique specifically 
developed for an LTV SISO GMVC [8].  LTV 
GMVCs were developed recently for LTV MIMO 
systems without using any pseudocommutation [9].  
However, it uses autoregressive LTV filters for 
optimization rather than moving average filters that 
are used by the standard LTI GMVCs.  As a result, 

the difference of plant input/output cannot be 
included into the cost functional directly although 
they are very useful in applications.  In this paper 
LTV moving average filters in general forms are 
introduced for optimization extending finally the 
standard LTI GMVC from LTI MIMO systems for 
LTV MIMO plants. 
 
 

2 Control Objective 
Having p inputs and p outputs the systems to be 
controlled is represented using the following LTV 
MIMO CARMA model. 
 

)(),()(),()(),( 111 dkWqkCkUqkBdkYqkA    

    (1) 
where U(k) and Y(k) are p1 plant input and output 
vector, d is a positive integer representing the time 
delay between them, W(k) is a p1 zero mean, 
independent Gaussian noise, whose variance is a 
uniformly bounded  pp   time-varying matrix and 
q-1 is the one-step-delay operator such that for a 
product of time-varying matrices F(k)G(k-1) we 
have  
 
q-1F(k)G(k-1)=F(k-1)q-1G(k-1)=F(k-1)G(k-2) (2)   
 
In CARMA model (1) 
 
A(k,q 1 )=I+A )(1 k q 1 +A )(2 k q 2 +...+A )(kn

q n

B(k,q 1 )=B )(0 k +B )(1 k q 1 +…+B )(km
q m  
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C(k,q 1 )=I+C )(1 k q 1 +...+C )(kh
q h         (3) 

are pp LTV moving average operators (MAO's)  
defined using matrix polynomials in the delay 
operator.  The LTV coefficient matrices of the 

polynomial, )(kAi , )(kBj and )(kCr , i=1, 2, ..., 

n,  j=0, 1, ...,m,  r=1, 2, ..., h, are uniformly 
bounded pp time-varying matrices.    Similar to the 

LTI case, the determinant of )(0 kB is assumed to be 

uniformly bounded away from zero such that the 
system has a unique and time-invariant delay.  The 
inverse operation of an LTV MAO is defined as an 
LTV autoregressive operator (ARO) that is denoted 
as  ),( 11  qkA  [8].  It is assumed that both 

),( 11  qkA  and ),( 11  qkC are exponentially stable. 

 Given a p1 uniformly bounded reference Z(k) 
and the input and output data up to and including the 
current time k the generalised minimum variance 
control objective is to minimise the following 
quadratic GMVC performance cost index.  
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dkS

dkkdkSdkEdkJ
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     (4) 
where the superscript T is for matrix transpose and 
E is for mathematical expectation conditioned on 
the data set D(k)={Y(k), U(k), Y(k-1), U(k-1), …}.  
In the above cost functional, )(k  and V(k) are 
time-varying weighting matrices for variance of the 
generalized output  tracking error and quadratic 
function of the filtered input vector.  Both are 
assumed to be uniformly bounded and uniformly 
positive definite.  This assumption should be 
nonrestrictive because the choice of both is in our 
hands.  The generalized output and reference are 
defined using LTV MIMO MAO filters as follows. 
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 (5) 

 
The LTV MIMO weighting filters have the forms  
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qkQqkQkQqkQ
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    (6) 

where all the time-varying coefficient matrices of 
the filters should be chosen to be uniformly bounded 
and the determinate of Q0(k) and R0(k) should be 
chosen to be uniformly bounded away from zero.  In 
addition we choose ),( 11  qkP and ),( 11  qkQ to 

be exponentially stable LTV AROs. 
 
 
3 GMVC 
We first develop a predictor (MVP) for the LTV 
CARMA model in terms of the filtered output in 
order to deal with the time delay.   Left multiplying    

),(),( 111  qkAqkP  on both sides of the LTV 
CARMA model (1) we have  
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     (7) 
 The division of LTV MAO’s in the last term of 
the above equation can be written in the form of 
long division as follows. 
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where 
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and 
 

s
s qkGqkGkGqkG   )(...)()(),( 1

10
1  (10) 

 
 Substituting (8) into (7) and noting (5) it follows 
that 
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Letting 
 

dqqkLqkHqkFqkP   ),(),(),(),( 1111     (12) 
 
where  
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has all the terms that have delays between zero and  
-d+1 inclusive.   Substituting (12) into (11) we have 
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 (14) 

 
 Taking mathematical expectation conditioned on 
D(k) and substituting (1) into the above equation we 
have minimum variance prediction of the filtered 
output as follows. 
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    (15) 

where )](/)([)(
^

kDdkEdk   is the d-step-

ahead prediction of )(k .   
 
 
3.1 GMVC Theorem   

If the LTV AROs ),,( 11  qkA  ),( 11  qkC  and 

),( 11  qkP are exponentially stable, the LTV MIMO 

GMVC for the CARMA model (1) is given by 
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Where 
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3.2 Proof  
Compare (14) and (15) we have 
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Noting cost index (4) we have 

 

)}(/)](),(

)())(),((

)(),()())(

),(())()((

)())()({[()(

1

1

1

1
^

^

kDdkWqkH

kdkWqkH

kUqkRkVkU

qkRdkSdk

kdkSdkEdkJ

T

T

T

















 (20) 

 
It follows form (1) and (20) that 

 

)](),()[()(2

)]()()[()(2
)(

)(

1
0

^

0

kUqkRkVkR

dkSdkkkB
kU

dkJ

T

T







 (21) 

and 
 

)()()(2)()()(2
)(

)(
00002

2

kRkVkRkBkkB
kU

dkJ TT 




    (22) 
 Bedause both Λ(k) and V(k) are uniformly 

positive definite and both )(0 kB and R0(k) are 

uniformly nonsingular the above equation shows 
that there exists optimal control U(k) such that the 
generalized minimum variance cost index will be 
achieved.  Letting (21) zero the LTV MIMO GMVC 
can be determined as follows. 
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 Left multiplying ),(),( 111  qkPqkA  on both 
sides of the above equation, solve for U(k) and 
substitute (1) we have the GMVC, 
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    (24) 
Comparing (1) with (16) we have  

 

0)(),(
~

1  dkWqkC  (25) 
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where 
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is the noise estimation error of (16).  Because of the 

exponential stability of ),( 11  qkC  this error will 

always decay exponentially to zero regardless any 
bounded initial condition.  As a result, U(k) will also 
converge exponentially to the optimal control.  
Noting (1), (17), (23), (24) and (25) we have the 
closed loop equation for the LTV GMVC 
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where 
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The closed-loop stability is determined by the 
following LTV ARO. 

 

1

11

11

1

11

),(),(0

0),(),(

00),(

),(

































qdkAqqdkB

qkTqkE

qdkC

qkM

d

 

    (29) 

Because ),( 1qkM is a triangle matrix and both 

),( 11  qkA  and ),( 11  qkC are exponentially 
stable the closed-loop system is exponentially stable 

if and only if ),( 11  qkT  is exponentially stable.  
According to (18) the exponential stability of 

),( 11  qkT  is in our hands because it can be 
modified by choosing appropriate weighting 
matrices and filters.   
 
 

4 Simulation 
The plant to be controlled is an LTV 2I2O system as 
follows.  

 

)1()()2()1()(

)()1()()2(




kWkCkWkUkB

kUkYkAkY
 (34) 

 
where W(k) is a 2 dimensional independent 
Gaussian process with zero mean and identity 
variance, the time-varying parameter matrices are 
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Both ),( 11  qkA and ),( 11  qkC are exponentially 
stable because both A(k) and C(k) are triangular 
matrices and the absolute values of all of their 
diagonal elements are uniformly less than one.  
However, B ),( 11  qk  is exponentially unstable 
because B(k) is  a triangle matrix and one of its 
diagonal elements is a constant and greater than one. 
The weighting matrices are  
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The output filter and reference filter are chosen as  
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Here we use the same exponentially stable filters for 
the output and reference in order for the output to 
follow the reference.  The input filter is 
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The reference and output are given in Fig. 1 and  
Fig. 2.  They show that the LTV MIMO GMVC is 
able to drive both outputs to follow the references 
regardless the process noise and rapidly time-
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varying parameters in the CARMA model.  The 
control variables are shown in Fig. 3. 
 
 

5 Conclusion 
A servo GMVC is developed for MIMO LTV 
systems without using pseudocommutation.  The 
LTV GMVC is a natural extension of the standard 
LTI GMVC from LTI MIMO transfer functions for 
LTV MIMO transfer operators for optimal control 
of an LTV CARMA model.  It uses LTV MAO 
weighting filters for flexibility and robustness of the 
closed-loop control systems and is applicable to a 
large class of LTV systems. 
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Fig. 1  The first output and its reference.  The 

dotted line represents the reference and the 
solid line represent the real output. 

 
 

 
Fig. 2  The second output and its reference.  
The dotted line represents, the reference and 

the solid line represent the real output. 
 

 

Fig. 3  Output of the GMVC.   The solid line is 
the first plant input and  the dotted line is the 

second plant input. 
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