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Abstract: A mathematical model proposed in previous studies was analyzed for simulation of an exogenous type
microbial depolymerization process. Inverse problems for a molecular factor and a time factor of degradation rate
were solved numerically with experimental outcomes before and after cultivation of microbial consortium E1 in a
culture media in which polyethylene glycol was the sole carbon source. Values of three parameters were obtainec
with the Newton-Raphson method and the Gauss-Newton method.
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Introduction dation were applied to exogenous type depolymeriza-

1

. . o . tion processes of PEG [5]. Inverse problems were
In microbial depolymerization processes, microorgan- go|yed numerically for degradation rates based on
isms utilizes polymer molecules as carbon sources. e \yeight distribution with respect to the molecular

Thosg processes are generally categorized into two weight before and after cultivation of microorganisms.
types; exogenous type processes and endogenous typeynce a degradation rate was found, an initial value

processes. Monomers are liberated from terminals
of molecules and absorbed into cells in an exoge-
nous type depolymerization process. Polymers de-
polymerizable in exogenous type depolymerization
processes include polyethylene (PE) and polyethylene
glycol (PEG). Oxidation of an-alkane starts with hy-
droxylation to produce a primary (or secondary) al-
cohol, which is oxidized further to an aldehyde (or
ketone) and to an acid. Carboxylataéilkanes are
structurally analogous to fatty acids and sustain the
B-oxidation for production of acetic acids. A PE
molecule liberates a monomer unit in one cyclesef
oxidation, and reduces in size undergoing successive
[B-oxidation processes until it becomes small enough
to be absorbed directly into cells. Thus primary fac-
tors of PE biodegradation are size reduction of large
molecules due tg-oxidation, and direct consumption
or absorption of small molecules by cells. A mathe-
matical model was constructed from those principles
for simulation of the PE biodegradation [3, 12, 4].
Besides PE, PEG is a polymer that undergoes
an exogenous type depolymerization process. PEG
is one of the polyethers whose chemical structures
are expressed with the general structural formula
HO(R-O),H (PEG: R= CHyCH;). PEG molecules
reduce in size liberating £Lcompounds (ChICH,) .
Mathematical techniques developed for PE biodegra-
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problem was solved numerically, and the transition of
the weight distribution was simulated. Time depen-
dence of degradation rates on time was also taken into
account in modeling and simulation of depolymeriza-
tion processes of PEG [7, 9, 10].

Unlike exogenous type depolymerization pro-
cesses, molecules sustain breakdowns due to arbi-
trary scission in endogenous type depolymerization
processes. Examples of polymers depolymerizable
in endogenous type depolymerization processes in-
clude polyvinyl alcohol (PVA) and polylactic acid
(PLA). PVA is depolymerized by oxidation followed
by cleavage of a carbon-carbon chain. A mathemati-
cal model was proposed for an enzymatic depolymer-
ization process of PVA . [14, 6]. The model was ap-
plied to enzymatic hydrolysis of PLA, and the degrad-
ability of PVA and PLA was compared [17]. Time
dependence of degradation rate was taken into ac-
count in study of endogeous type depolymerization
processes pf PLA [8]. A model originally proposed
for endogenous type depolymerization processes was
applied to an exogenous type depolymerization pro-
cess of PEG [11].

In this study, exogenous depolymerization pro-
cess of PEG is revisited. A microbial depolymer-
ization of PEG was analyzed with a model proposed
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in previous studies. Inverse problem for a molecu- Let~ (¢, M) be the weight lost fronw (¢, M) per
lar factor and a time factor of degradation rate were unit time and unit weight at time Letq (K, M) be
solved numerically with experimental data introduced the weight transfer per unit weight from (¢, M) to
into analysis. In previous studies, weight distribu- w (¢, K) for 0 < K < M. Note that

tions before and after cultivation of microbial con-
sortium E1 for one day, three days, five days, seven
days, and nine days were analyzed [10]. In one of the
studies, the Newton-Raphson method and the bisec- o
tion method were applied to an inverse problem for holds. The amount of loss from (¢, M) per unittime
a time factor with weight distribution before and af- is~ (t, M) w (¢, M), and

ter three days, seven days, and nine days [13]. In
another study, the Newton-Raphson method and the
Newton’s method were applied to an inverse problem
for a time factor with weight distribution before after
two days, four days, and seven days [16]. In this study,
the application of Newton-Raphson method to an in-
verse problem for a time factor is demonstrated with
numerical result based on weight distributions before Time factors of degradability such as temperature, dis-
and after cultivation of microbial consortium E1 for  solved oxygen, and microbial population act evenly
three days, five days, and seven days. The application on molecules regardless of the molecular weight. The
of Gauss-Newton method to an inverse problem for a degradation rate (¢, M) is a product of a function
time factor is also demonstrated with numerical result of ¢, which is denoted by (t), and a function of\/,
based on weight distributions before and after cultiva- which is denoted by (A1), so that

tion for one day, three days, five days, seven days, and
nine days.

M
| atwon ar =1 (4)
0

p(t, K, M) =~ (¢, M) q (K, M)w(t, M) (5)

holds. Note that the equation (4) leads to

/Mp(taKvM) dK:’Y(tM)w(t:M) (6)
0

vt M) = o (t) A (M) . (7)

2 Description of Model for Exoge-
nous Type Microbial Depolymer-
ization Process

In order to formulate a microbial depolymerization
process, letw (¢, M) be the weight distribution with
respect to the molecular weight at timet, that is,
the total weight of residual polymer fot < M < B
at timet is the integral
B
/ w(t, M) dM . (1)
A
Let v (¢) be the total residual polymer at time The
residual polymew (¢) is given by

v(t):/ooow(t,M) dM , (2

which can be approximated with the integral (1) for
appropriate values of andB. Letp (¢, K, M) be the
total weight of molecules with molecular weight

to become molecules of molecular weidhitat timet
per unit time at time. The principle of mass conser-
vation leads to the equation (3) [15].

M
%@; - —/ p(t, K, M) dK
0 (3)

% N
+/ Zp(t,M,K) dK.
v K
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Liberation of monomers in an exogenous depoly-
merization process is memoryless, which means that
an amount liberated from a molecule at one stage does
not depend on the amount liberated at the previous
stage, and amount liberated from a molecule fol-
lows exponential distributiope="7 [1]. In an ex-
ogenous depolymerization process, amaunt K is
truncated from a molecule with molecular weight
in transformation to a molecule with molecular weight
K. Substitution/ = M — K and scaling according to
condition (4) lead to the expressiongfK, M) given
by
e @

The parametep is referred to as the intensity of the
exponential distribution. In order to determine the
value of the parameter, liberation of monomer units
in the exogenous depolymerization process is consid-
ered. In an exogenous type depolymerization process,
molecules reduce in size through successive libera-
tion of monomers. Lel be the molecular weight of
monomer unit truncated from a terminal of a molecule
in one cycle of depolymerization processg. PE:

L =28 (CH,CHs), PEG:L = 44, (CHyCH>0). Ex-
pression of in terms ofL,

q(K,M)=

1
pzzlogQ. 9)

was obtained in a previous study [15].
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Substituting expressions (5) - (8) into equation
(3), eqaution (10) is obtained.

8—w:0 t) |- A(M)w
= <>[OO< ) o)
+c(M) /M AMK)d(K)w(t, K) dK],
where
oM pe K
c(M) = MeP™, d(K):m.

The growth rate of microbial population depends
on the residual polymer in the culture medium. Sup-
pose that the microbial population is stationary for
the total mass per individuéd. The microbial pop-
ulation increases over a time interval in whith<
v (t) /o (t) and decreases over an interval in which
h > v (t) /o (t). The value of the expression

o)
1 hv(t)

is a margin of increment for the microbial population.
The time rate of change of (¢) per individual is a
constant multiple of this expression, and the microbial
populationo (t) satisfies

o _l1-n-2 Vo
dt v (t)

for some positive constarit. System of equations
(10), (11) is associated with the initial condition

’U)(O,M):fo(M>,

o (0) =09, (13)

wheref, (M) ando are the initial weight distribution
and the initial microbial population, respectively.

(11)

(12)

3 Inverse Analysis for Molecular
Factor and Time Factor of Degra-
dation Rate

Consider the change of variable frarto ~ defined by

t
T:/ o(s)ds. (14)
0
Note that J
-
— =0 (t 15
=0 (15)
holds. Let

Wi(r,M)=w(t,M), S(t)=0(t), V(r)=v(t)
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for which the relationship (14) holds. According to
the equation (15),

oW owdt 1 5711)

or  Otdr o(t) ot

and the equation

W \oanw
or (16)
+c(M) [if AK)d(K)W (1,K) dK
is obtained from the equation (10). Similarly, the
equation (11) is converted to
ds S
— =k(1=-h—0].
dr F < hV (T)) (7

Suppose thaty (M) and F, (M) are the weight
distribution forr = 11 andr = T3, respectively
(0 < Ty <T3). Given\ (M), equation (16) and the
initial condition

W(r,M)=F (M) (18)

form an initial value problem. Equation (16), the ini-
tial condition (17), and the terminal condition

W (72, M) = Fy (M) (19)

form an inverse problem for the degradation rate
A (M) for which the solution of the initial value prob-
lem (16), (18) also satisfies the condition (19). Tech-
niques to solve the inverse problem were developed
in previous studies [11]. In particular, the molecu-
lar factor A (M) was obtained fofl; = 0, T, = 4,

Fy (M), andF; (M) were the weight distributions of
PEG after cultivation of the microbial consortium E1
for one day and five days, respectively. Once\/)
was obtained, the initial value problem consisting of
the equation (16) and the initial condition

W (0, M) = fo (M) (20)

was solved, and values ofcorresponding to values of
t were obtained numerically by solving the equations
V(1) =wv(t), where
B
V(r) = / W (r, M) dM . 21)
A

Table 1 shows that=1.0,¢t = 3.0,t = 5.0,¢t = 7.0,
andt = 9.0 correspond tar ~ 0.060, 7 ~ 0.553,
T =~ 4.062, T ~ 7.932, andT =~ 7.080, respec-
tively, according to the change of variables (14). It
also shows that (1) /v (0) ~ V (0.060) /V (0) =~
0.980, v (3) /v (0) ~ V (0.553) /V (0) ~ 0.778,
v(5) /v (0) ~ V(4.062)/V(0) =~ 0.097,
v(7)/v(0) =~ V(7.932)/V(0) =~ 0.017, and
v(9) /v (0) = V (7.0080) /V (0) ~ 0.023.

Volume 1, 2016



International Journal of Chemistry and Chemical Engineering Systems

M. Watanabe, F. Kawai

4 Application of the Newton-
Raphson Method in Inverse Anal-
ysis of Time Factor

The solution of equation (17) with the initial valug
depends not only onbut also onv, &k, andh. Denote
by S (1, 00, k, h) the solution of (17) which satisfies
the initial conditionS (0, 0¢, k, h) = 0. Let

T 1
w(r, 00,k h :/ -
( ’ ) 0 S(Q7007kah)

In view of the expression (10}, = w (7,00, k, h).
Suppose thaty, t5, andts correspond tar, 72, and

73 according to the change of variables (14), so that
li=u (Tiaaoaka h) (Z =1,2, 3) Letyg; (007 ka h) =

u (73,00, k, h) — t;, and consider the system of equa-
tions

dg.  (22)

gi (00, k,h) =0 (i=1,2,3) (23)
for the unknownsr, &, andh.

In application of the Newton-Raphson method, a
sequence of approximate solutiang x4, ... is gen-

erated with the recurrence formula

Tn+l = Tn — Jn_lgn (TL = 07 17 .. ) ) (24)
where
00,n gdin
Ty = kn y 9n = 92,n ’
hy 93.n
gl,n Mn Cl,n
Jn == 52,71 772,n C2,n )
53,71 N3.n CS,TL
dg;
bin = 5o . @)
90 loog=00.1, k=kn, h=hn
9g;
Nin = 577 ) (26)
ok 00=00,n, k=kn, h=hn
Jg;
Ci,n = % ) (27)
00=00,n, k=kn, h=hn
Gim = Gi (Uo,m ks hn) (28)
Note that
O9: _ Ou
80'0 - aO'O =1,
8gi ou
ok — Ok|_. "’ (29)
dgi N @
oh ~ oh|._.
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Partial derivative)u /0oy is the solution of the initial
value problem

i (o) = e (am)

o
dog

(30)
= 0,

7=0

while partial derivatived.S/doy is the solution of the
initial value problem

d(os\ _ (05
dr \9oo) V(1) \9oo)’
as
doyg

(31)

7=0

Similarly, partial derivativedu/0k is the solution of
the initial value problem

% (g@ s <1T>12 @2) ’

Ou
ok

(32)

=0

anddS/ 0k is the solution of the initial value problem
(08N _ | _ b g Kb (05
dr \ok) vin~ Y T v \ak )

oS
ok
(33)
Partial derivativedu/0h is the solution of the initial
value problem

7 (@) = “wor (@)

du
oh

7=0

(34)

7=0

anddS/0h is the solution of the initial value problem

H(5) - vialoo ).
0S

h

(35)

7=0

Initial value problem (31) is solved fo®)S/doy,
and then the initial value problem (30) is solved for
Ou/doy. Initial value problem (33) is solved for
0S/0k, and then the initial value problem (32) is
solved forou/0k. Initial value problem (35) is solved
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for 0S/0h, and then the initial value problem (34) is
solved forou/oh.

Values3, 5, and7 were set fortq, t2, andts, and
the corresponding values of, 7, andrs were set ac-
cording to table 1. The system of equations (23) was
solved numerically with techniques described previ-
ously. Table 2 shows the results obtained from ap-
plication of the Newton-Raphson method. Figure 1
shows the curvéu (7,09, k, h),V (7)) for the value
of the parameters obtained from application of the
Newton-Raphson method.

5 Application of the Gauss-Newton
Method in Inverse Analysis of
Time Factor

Suppose thaty, to, ..., t,, correspond tory, 7o,
.., Tm according to the change of variables (14),
so thatt; = u (7, 00,k,h) (i=1,2,...,m). Let

gi (00, k,h) = u(7;,00,k,h) — t;, and consider the

http://www.iaras.org/iaras/journals/ijcces

m = 5, respectively. Figures 2 and 3 show the curve
(u(7,00,k,h),V (7)) for the value of the parame-
ters obtained from application of the Gauss-Newton
method form = 4 andm = 5, respectively.

6 Conclusion

In previous studies, the Newton-Raphson method was
applied to the system consisting of the first two equa-
tions of system (23), and functiong = ¢ (h) and

k = 4 (h) were obtained numerically. The bisection
method [13] and the Newton’s method [16] were ap-
plied to the equations (¢ (k) ,v (h),h) = 0. In this
study, application of the Newton-Raphson method to
the equation (23) was demonstrated. Table 2 shows
that it took eleven iterations for residuals between two
consecutive approximations to reducelto 2. Ap-
plication of the Gauss-Newton method to the nonlin-
ear least squares problem was also demonstrated. Ta-
ble 3 shows that it took seventeen iterations for the
residual between two consecutive approximations to

nonlinear least squares problem for parameter values reduce to10~'2 for m = 4. Table 4 shows that it

to minimize the square sum

;Zj; [g,» (ao,k,h)]2.

SUppOSG that fima Mins Ci,na and Jin
(i=1,2,...,m) are given by the formulas
(24), (25), (26), and (27), respectively, and the partial
derivatives ofg; are evaluated with the formulas (28)
- (34). In application of the Gauss-Newton method to

took twenty nine iterations for the residual between
two consecutive approximations to reducelfo!2
form = 4.

Figure 1 shows an acceptable agreement be-
tween the numerical result obtained with the Newton-
Raphson method and the experimental result fer
3.0,¢t = 5.0, andt = 7.0. The numerical result shown
in Figure 1 seems almost identical with the numeri-
cal result obtained with the Gauss-Newton method for
m = 4 (Figure 2). However, while the numerical re-

the nonlinear least squares problem [2], a sequence of sult shown in Figure 1 matches the experimental result

approximate solutiong:, x1, .
the recurrence formula

.. is generated with

Tpp1 = — (JIT) " Ilg,,  (36)

where
9gin
g0n 92.n
Tp = kn ) g, = . )
b,
Im,n
gl,n M,n Cl,n
52,n mn CQ,n
gm,n Thm.n Cm,n

Values 1, 3, 5, 7, and 9 were set forty, to,
ts3, t4, andts, and the corresponding values of,
79, T3, and T, were set according to table 1. Ta-
bles 3 and 4 show the results obtained from appli-
cation of the Gauss-Newton method far = 4 and

ISSN: 2367-9042 50

closer than the one shown in Figure 2 doegfer 3.0,

the latter matches the experimental result closer than
the former does fot = 1.0. Figure 3 shows large
mismatch between the numerical result obtained with
the Gauss-Newton methogh(= 5) for t = 5.0.
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Table 1: Values of andr, and residual PEG before and after cultivation of microbial consortium E1 for one day,
three days, five days, seven days, and nine days. Equdtien = v (¢) was solved numerically, whefié (7) is
given by the formula (21)4 = 1032, B = 10*?), and the values of that correspond t6 = 1.0, 3.0, 5.0, 7.0,
and9.0 were obtained numerically.

t T Residual PEG (%)
0.0 | 0.00000000000000000100.00000000000000000
5
3

1.0 | 0.06047187563063424 97.9519815963434865¢
3.0 | 0.55262989011516628 77.76599322364261011
5.0 | 4.06234786958022198 9.68345996176650736
7.0 | 7.93233059730225154 1.65477164993089931
9.0 | 7.079706516732399811 2.34153807149406745

Table 2: Change of parameter values and iteration countgfer= 0.01, kg = 1.0, andhg = 20.0 in application
of the Newton-Raphson method (24).

00,n ky, hy ||:Bn - mn—l”
0.02061900503748851.056937488903717514.293524205477847[75.706769719760723
0.02589480288759551.055610015947852813.934888132191664(70.358677333113672
0.02588644746087851.055612974341687513.93167829824413670.003209846185715
0.02588745572836821.055612187764417113.93167964834086630.000001859588210
0.025887334399353]7 1.055612282396412[7 13.931679458113652[70.000000244667809
0.02588734900165201.0556122710071971 13.93167948100812300.000000029446529
0.02588734724425561.055612272377903613.93167947825281420.000000003543868
0.02588734745575851.0556122722129566 13.93167947858446530.000000000426536
0.02588734743030451.0556122722328056 13.93167947854461100.000000000051286
10 | 0.025887347433367] 1.055612272230413313.93167947854939830.000000000006166
11 | 0.02588734743300021.055612272230682013.93167947854880320.000000000000749

O ONOOU A WNRFPS

NS OO0 N0 N B 0rwo+&=

Table 3: Change of parameter values and iteration countgfer= 0.01, £ = 1.0, andh = 20.0 in application of
the Gauss-Newton method (36) for = 4.

n 00,n kn, hn, ||3-'5n - xn—l”

1 | 0.02314116118894651.008967640074392(114.279337989103712[75.720684133178290
2 | 0.03190965559566750.988237024594771313.71654691076934900.563241016586221
4 | 0.03214564935255730.990826564374459413.71971248451331960.000849000037443
6

8

0.03215296146757790.9907949218247025 13.71957451477970660.000032826402148
0.032153219669533{ 0.9907938009225293 13.71956963736689690.000001160100337
10 | 0.03215322879369190.9907937613098488 13.71956946501006060.000000040995652
12 | 0.03215322911612250.990793759910017313.71956945891927580.000000001448519
14 | 0.03215322912751680.990793759860553513.71956945870432950.000000000051412
16 | 0.032153229127920{1 0.9907937598587845 13.71956945869646740.000000000001592
17 | 0.03215322912793760.9907937598587064 13.71956945869613520.000000000000341

~NTO O 00 © 0000w N O
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Table 4. Change of parameter values and iteration countgfer= 0.01, £ = 1.0, andh = 20.0 in application of
the Gauss-Newton method (36) far = 5.

n 00,n kn I ”wn - wn—lH

1 | 0.03241871831710350.682215838270555[1 15.48208743493810864.529130525599939
2 | 0.05356194906118510.653412709042466111.97961429081576063.502655390094480
4 | 0.06696394740452690.625164880807643811.61359988757157250.114722455308299
6

8

0.06721700097560800.624078525826201311.62446852101942700.007205599313935
0.06721724674935880.624082696820497911.62611771608917800.000950234655170
10 | 0.06721683687095060.624085362736761[111.62633745899192840.000125962329087
12 | 0.06721677644751360.624085745400731011.62636662052003270.000016707876303
14 | 0.06721676834933250.624085796559567611.62637048902964660.000002216317808
16 | 0.06721676727395500.624085803351348P11.626371002198858(70.000000293999159
18 | 0.06721676713128700.624085804252375611.626371070271709{10.000000038998886
20| 0.06721676711236560.624085804371874211.62637107930138920.000000005173572
22| 0.06721676710985460.624085804387732811.626371080499676090.000000000685815
24| 0.06721676710952180.624085804389834111.626371080658190(10.000000000091348
26 | 0.06721676710947730.624085804390115411.62637108067925060.000000000012442
28| 0.06721676710947100.624085804390157311.62637108068229350.000000000001467
29| 0.067216767109470} 0.6240858043901598 11.62637108068279800.000000000000504

Or 85 N OSSO O S WOHFUOrNooO OO

100 g R e [ . ) L L
Numerical result (Newton-Raphson) =«=«=:+
,,,,,,,,, e, Experimental result g

0:-100:00000000006000000-9

90

ay 1. 97.95;198159634348656 %

3:-77.76599322364261013-9
y-3i- 17 76599322364261013 o

ay 5. 9.68345996176650736 %

80

: 1654771 64993089931 0,
Yol L0041 104! 89931 Yot

ay 9. 2.34153807149406745 %

70

v-2
o9 o99d

60

50

Residual (%)

40

30

20

10

Figure 1: Transition of residual PEG. The curue(r, 09, k, k), (V (1) /V (0)) x 100) for the values oby, k,

andh (Table 2,n = 11) obtained from application of the Newton-Raphson method (24) is shown. The figure also
shows the residual PEG before and after cultivation of the microbial consortium E1 for one day, three days, five
days, seven days and nine days.
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100 @emovisiyiiig Wy b x
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90 Dajy-0: 100:00000000000000000 %
Day 1: 97.95198159634348656 %
80 Day 3:-77:76599322364261013 %
Day 5: 9.68345996176650736 %
70 Day 7:-1.65477164993089931 %
Day 9: 2.34153807149406745 %
$ 60
s
3
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1<}
2
w40
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20
10
0
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Figure 2: Transition of residual PEG. The cufve(r, 0g, k, k), (V (1) /V (0)) x 100) for the values oby, k, and

h (Table 3,n = 17) obtained from application of the Gauss-Newton method (36)=) is shown. The figure

also shows the residual PEG before and after cultivation of the microbial consortium E1 for one day, three days,
five days, seven days and nine days.
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Figure 3: Transition of residual PEG. The cufve(r, og, k, k), (V (1) /V (0)) x 100) for the values oby, k, and

h (Table 4,n = 29) obtained from application of the Gauss-Newton method (36)+2) is shown. The figure

also shows the residual PEG before and after cultivation of the microbial consortium E1 for one day, three days,
five days, seven days and nine days.
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