
Rogueinabox: an Environment for Roguelike Learning

ANDREA ASPERTI
University of Bologna

Department of Computer Science
Mura Anteo Zamboni 7, Bologna, Italy

ITALY
andrea.asperti@unibo.it

CARLO DE PIERI
University of Bologna

Department of Computer Science
Mura Anteo Zamboni 7, Bologna, Italy

ITALY
carlo.depieri@studio.unibo.it

GIANMARIA PEDRINI
University of Bologna

Department of Computer Science
Mura Anteo Zamboni 7, Bologna, Italy

ITALY
gianmaria.pedrini@studio.unibo.it

Abstract: In this article we introduce Rogueinabox: a highly modular learning environment built around the
videogame Rogue, the father of the roguelike genre. It offers easy ways to interact with the game and a whole
framework to build, customize, run and analyze learning agents. We discuss the interest and challenges of this
game for machine learning and deep learning, and then discuss our initial experiments of training.

Key–Words: Machine Learning, Reinforcement Learning, QLearning, Neural Network, Artificial Intelligence,
Rogue, Game

1 Introduction
Roguelike games are an interesting challenge for

Q-learning and reinforcement learning. The father of
all these dungeon crawling games is Rogue, a game
developed around 1980 for Unix-based mainframe sys-
tems, with a plain ASCII interface (see Fig. 1). The
game was ranked in sixth position in a recent list of PC
World of the ”Ten Greatest PC Games Ever” [1], and
in spite of its age and the spartan, bi-dimensional in-
terface, the game still exerts an indubitable fascination.
We shall discuss in the next section the many features
of this game that pose interesting challenges for ma-
chine learning. One of the most important aspect is that
the ASCII nature of games such as Rogue, and of some
of it’s spiritual successor like Angband and NetHack,
allows to bypass many typical issues related to com-
puter vision (which by now are, thanks to the impres-
sive achievements during the last five years, relatively
well understood), resulting in a direct focus on plan-
ning and strategy development, the most interesting and
complex aspects of automatic learning.

Many game environments suitable for Reinforce-
ment learning already exist, most notable examples
are Arcade Learning Environment (ALE [2]), Ope-
nAI Universe [3] [4] and VizDoom [5]. Frameworks
for interacting with roguelike games also already ex-
ist, such as [6] for Desktop Dungeons and BotHack [7]
for NetHack, but none was available for the game of
choice of this work: Rogue. Rogueinabox aims to of-
fer a highly modular and configurable environment for
Rogue, meant to ease the interaction with the game and

the definition of agents.
Our framework features a modular architecture,

implementing separately all the main components of
our learning environment: agents, experience memory,
network models, reward functions, states representa-
tion, game evaluation, logging and ui. Each module
is easily configurable to suit the user needs and can be
extended to quickly modify or add new behavior.

2 Relevance for Machine Learning
In this section we highlight some of the main fea-

tures of Rogue that makes it an interesting test bench
for machine learning and, especially, deep learning.

2.1 POMPD nature
Rogue is a Partially Observable Markov Decision

Process (POMPD), since each level of the dungeon
is initially unknown, and is progressively discovered
as the rogue advances in the dungeon. Solving par-
tially observable mazes is a notoriously difficult and
challenging task (see [8] for an introduction). They
are often solved with the help of a suitable (built-
in) searching strategy, as in [9], that is not particu-
larly satisfying from a machine learning perspective.
A Neural Network based reinforcement learning tech-
nique to learn memory-based policies for deep memory
POMDPs (Recurrent Policy Gradients) have been in-
vestigated in [10]. The prospected scenarios are similar

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 146 Volume 2, 2017

Figure 1: A typical Rogue level.

to those of Rogue: partial knowledge of the model and
deep memory requirements, but they considered much
simpler test cases.

2.2 No level-replay
In most video games, when the player dies, the

game restarts the very same level with the same lay-
out and the same obstacles. Learning in these situations
is not particularly difficult, but the acquired knowledge
will be useful for that level and that level only, hence
learning must be started anew for subsequent levels. As
observed in [11], standard CNN-based networks - com-
prising Deep Q-Networks (DQN) - can be easily trained
to solve a given level, but they do not generalize to new
tasks.

Rogue has been one of the earlier examples of pro-
cedural generated levels, which was one of the main
novelty when the game was introduced: every time a
game starts or the player dies, a new level gets gener-
ated, every time different from the previous ones. Pro-
cedural generated content is partially random, main-
taining some constrictions (each level will almost al-
ways have nine rooms, for example, but the form, the
exact position and the connections between them will
vary). This means that extensive, level-specific learning
techniques could not be deployed, because the player
would eventually die, and the dungeon would change.
As a consequence, learning must be done at a much
higher level of abstraction, requiring the ability to re-
act to a generic dungeon, taking sensible actions. Even
with a lot of training data covering all possible configu-
rations, and a rich enough policy representation, learn-
ing to map each task to its optimal policy in a reactive
way looks extremely difficult. A mechanism that learn
to plan is likely needed, similarly to the value-iteration
network (VIN) described in [11].

2.3 ASCII graphics
Rogue is meant to be played in a terminal, therefore

renders all its graphics with ASCII characters using the
ncurses library (you can see a game screenshot in Fig.
1). This has two consequences: on one side, the sim-
ulation is very fast (in comparison with more modern
and complex graphic games); on the other side, the in-
formation presented on the screen is already coded and
differentiated, which makes it easier to parse and rein-
terpret it (we see no point in deploying OCR techniques
to discriminate the different icons).

Another by-product of the architecture used to de-
velop the game is that every single action the player
takes results in a single screen update. This one-on-one
relationship between an action and the change of the
game state makes it easy to implement an action-reward
based learning model.

2.4 Memory
In many situations, the rogue need a persistent

memory of previous game states and of previous
choices in order to perform the correct move. A very
simple example is when searching for secret passages
in a section of the wall or at the end of a corridor. In
this cases, the hidden passage my appear after an ar-
bitrary number (usually between 1 and 10) of press-
ings of the search button (s) and you need to recall
the number of attempts already done. You also need
memory in mazes, since you need (at least) to re-
member the direction you came from to avoid looping
(but a more general recollection of past rogue positions
would likely improve the behavior and robustness of the
agent). Since the discovery of Long-Short Term Mem-
ory models (LSTM) [12, 13], the use of memory in neu-
ral networks is increasingly popular, providing one of
the most active and fascinating frontiers of the current
research (see e.g. the recent introduction of Gated Re-
current Units - GRU [14]). LSTM have been already
used for in [15] for Atari games, to replace the sequence
of states of [16], and are also exploited in [17]. Al-
though in our preliminary experiments we did not use
recurrent networks, exploiting instead some simple and
explicit forms of memory (see Section 4.1.2), Rogue
seems to provide a really interesting test bench for these
techniques.

2.5 Attention
Another hot topic in Machine Learning is attention:

the ability, so typical of human cognition, to focus on

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 147 Volume 2, 2017

a specific fragment of a scene of particular interest, ig-
noring others of lesser relevance, to build a sequential
interpretation and understanding of the whole scene it’s
being looked at. Clearly, in a game like Rogue, the
environment immediately surrounding the character is
the main center of attention, and the agent moving the
rogue must have a precise knowledge of it without how-
ever loosing the whole picture of the map. Many tech-
niques have been recently introduced for addressing at-
tention, comprising e.g. the recent technique of spatial
transformers [18], that looks promising for this applica-
tion, due to the highly geometrical structure of Rogue
rooms and corridors. We are also currently investigat-
ing a different technique, inspired by convolutionaliza-
tion [19], and essentially based on aggressive use of
maxpooling mediated by an image-pyramid vision of
the map (see Section 4.1.3).

2.6 Complex and diversified behaviors
Dungeon-like games offer an interesting combina-

tion of diversified behaviors: moving around, fighting
monsters, descending/escaping the dungeon, acquiring
loot, exploiting the equipment in the inventory. Merg-
ing together these activities and their learning is a com-
plex problem. As of now, the agent behavior is tradi-
tionally divided into two phases, one involving explor-
ing the map, collecting items, finding enemies, and an-
other one for fighting [20, 21, 17]. Each phase is cov-
ered by a specialized network, trained in a specific way.
Combining together neural models optimized on differ-
ent tasks is still an open issue in neural systems.

3 Rogueinabox Modules
In this section we explain in detail the differ-

ent modules of Rogueinabox. The final aim is to
have an environment that allows to conveniently build
Rogue agents, and especially self-taught agents with
autonomous intelligence, based on deep learning and
reinforcement learning. The architectural design of
Rogueinabox was driven by the wish to obtain a high
modularity and configurable system. Rogue is a com-
plex game, based on many different variables, and be-
ing able to tune them individually, precisely and with
ease is a priority. For this reason each module is freely
configurable to suit the user needs, who can also com-
fortably add his own methods to the already existing
library.

Figure 2: A room heatmap showing the Qvalue in warmer
colors. Arrows correspond to the selected action, correctly
defining paths leading to doors.

3.1 Rogue wrapper
This library wraps the game itself and is responsi-

ble for running, restarting and killing the game process
when needed. It sits between Rogue and the rest of the
framework and provides methods to send commands to
the game, but most of all to parse its response. It offers
easy access to status bar information and provides the
raw game state (the screen) that will be parsed by the
other modules.

3.2 State representation
This module takes raw data from the Rogue wrap-

per and transform them before passing them to the
agent. The shape of the state representation and the
amount of information the user might want to give the
agent might vary wildly depending on the objective that
has to be achieved. For example we might want to hide
some information (such as the inventory or the status
bar) and focus on solving a simpler problem like mov-
ing and fighting. We might also want to vary the shape
and the channels of the states, using multiple layers or
cropped views.

3.3 Reward functions
This module manages the reward function that will

give a score to every agent action. Rogue does not have
a proper score system: the final goal is to retrieve the
amulet of Yendor, that is very deep in the dungeon; vis-
ible state parameters such as the rogue’s health and ex-
perience change very slowly, and even the gold (and
other goods) found along the way provides very sparse
rewards. Crafting an agent able to learn from these
weak reinforcements is a really challenging objective.
While this is indeed the final goal, it may be conve-
nient to start addressing simpler scenarios, where the
rogue agent is provided with additional rewards, related
to the portion of the dungeon being explored, to move-
ment, et similia, aimed to incentivize particular behav-

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 148 Volume 2, 2017

iors. The choice of the reward function defines which
objective we are pursuing and in which way we are do-
ing it, hence the ability to change it accordingly with
our aims is relevant for testing and understanding the
agent behavior. The reward module has access to all
the raw information presented on the screen (before the
state conversion) so its easy to manipulate it and extract
whatever data or variation in data we find useful.

3.4 Evaluation
This module takes care of evaluating the overall

performance of an agent during a game. It provides
hooks to insert in every train or play cycle, and at the
end of every game, allowing to calculate a score for the
current game. It can be used to grade agents perfor-
mance, to compare agents as well as to ensure the best
weights are always saved. It’s possible to easily define
new criteria for evaluation, which is not an easy feat
and an equally difficult albeit different task than reward
definition; this is especially true during early develop-
ment, since game statistics like gold or dungeon level
are poorly portraying the agent doings.

3.5 Network models
This module governs the structure of the neural net-

work that will form the mind of the agent. The model
defines how the agent ”thinks” and what he sees and
focuses on given a particular state. We used Keras [22]
as our deep learning framework of choice because of
his simple and researcher friendly structure but model
construction is abstracted by a model manager, so the
user can use whatever framework he likes to build the
model and just encapsulate it in an object with a keras
like model interface.

3.6 Experience memory
This module manages the agent memory of his past

state transitions, which includes actions taken and re-
wards received. Experience memory has proven to be
an extremely valuable tool in reinforcement learning
[16]; using this technique is possible to reduce corre-
lation between state transitions. Collecting past expe-
riences also allows to train a different model on an al-
ready saved history (given that the state representation
is the same) in a time efficient manner. We also provide
tools to filter which transition ends up stored into mem-
ory, allowing the creation of a more balanced history
that better fits the target needs.

3.7 Agents
This module takes care of the different implemen-

tations of the agent. We provide 3 base agents; an user
controlled one, a random agent and a qlearner agent that
is capable of training and running models using a deep
Q-learning strategy as shown in [16]. As with any other
module the user can write his own agent that uses the
tools provided by Rogueinabox and implements a learn-
ing algorithm of choice.

3.8 Logging
This module manages the logging of the agent ac-

tions. Logs can be printed to various streams (stdout,
file, the UI...) and filtered by verbosity levels. This
module also provides a way to trace the execution time
of sections of code; its most notably use is monitoring
the speed and performance of the model updates during
training. For certain state representations it’s also pos-
sible to visualize the agent decision and plot them as
seen in Fig. 2.

3.9 UI
This module handles the user interface for

Rogueinabox. Since the screen updates require time it
is recommended to train with the UI turned off and just
parse the log file to retrieve information about the cur-
rent state of a training. Nevertheless sometimes it might
be useful to watch what the agent is doing to hunt down
bugs or just to see the result of a training in action. We
provide two different UI implementation, one is a TK-
Inter GUI (for desktop uses) and one is a Curses UI (for
remote headless server uses).

4 Training the agent
Hard-coded agents for roguelike games are already

available; examples are Rog-o-matic for Rogue [23],
Borg [24] for Angband and BotHack [7] for NetHack.
Instead, this chapter will explain the steps taken for
building and training a Rogue QLearning agent using
the Rogueinabox environment.

Rogue is a very challenging game, even for a hu-
man; the Q-learning architecture for Atari Games pre-
sented in [16] works very bad in this case: comparable
to a completely random agent. This is not very sur-
prising: that network only performs well on a specific
class of games, requiring from the user prompt reac-
tions to predictable events (see [25]), little (typically
mono-dimensional) movement, and no form of plan-

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 149 Volume 2, 2017

ning (see [11]).
The weakness of the CNN-model of [16] in the case

of Rogue also appears to be related to the vision struc-
ture: the first convolution filter with dimension 8x8 and
stride 4 is far away too rough for the kind of very de-
tailed (pixel-based) perception of the environment re-
quired by this game.

To have a better grasp of the problems, we focused
on the mere task of exploration: enemies, items, inven-
tory and other Rogue features were intentionally left
out. Moreover, we addressed problems of increasing
complexity like: exiting from the room, traversing cor-
ridors, finding the stairs and taking them. All these ex-
periments are documented in the code; in this article we
only discuss the current network architecture, obtained
as a result of the previous experiments.

4.1 Deep QLearning Agent
4.1.1 Reward function

Since we are not taking money and other goods
into account, we adopted a rewarding mechanism typ-
ical of mazes (see e.g. [8]): a large reward for the ob-
jective (in this case, the stairs), a negative reward for
wrong moves (walking through a wall or trying to de-
scend where there are no stairs), and a small negative
reward for every other move (the so called “living” re-
ward). Since the map get progressively discovered as
the rogue walks through it, it looks natural to also add
a positive reward for every new map tile traversed. Fi-
nally, we investigated small “movements” rewards, as
suggested in [17].

This mechanism of rewards works reasonably well
as long as the rogue is driven by the exploration of new
portions of the map, but the agent get confused when he
needs to turn back, retracing his steps. This is precisely
where Q-learning should step in, allowing to take into
account a future reward, in spite of many minor nega-
tive moves required to reach it. The problem is making
sure the agent is able to correctly recognize the config-
uration providing the reward, and training it to make
such association. The complexity of the problem de-
rives from its generality (the rogue could be in any po-
sition in the map), and the need to focus attention on
the area surrounding the rogue.

This are the main motivations for the tower ar-
chitecture discussed in Section 4.1.3, combining a lo-
cal/global vision of the map based on an image pyramid
idea, allowing to combine the “what” and the “where”.

Moreover, it also looks important to provide the
agent with a persistent memory of its past whereabouts,
discussed in the next sections.

4.1.2 State representation
Rogue represents its dungeons using a small sub-

set of ASCII characters, that can be naturally regarded
as different color channels. This means each icon has
its dedicated (true or false) channel: a channel for the
rogue, one for doors, one for walls, and so on. For the
sake of simplicity, we collapsed a few classes, and omit-
ted those we are not taking into account (e.g. monsters,
goods, and a few others). At present, we use the follow-
ing 80x22 binary maps (re-scaled to 0-255 for the uint8
datatype):

• Map channel Representing the currently visible
map (true if visited, false otherwise)

• Player position channel for the player position

• Doors positions channel for doors

• Stairs positions channel for the position of the
stairs

As mentioned above, the agent need to have some
persistent memory of its past whereabouts. In the fu-
ture, we plan to integrate this component in the network
architecture, either by means of recurrent units such as
LSTM or GRU, or some different solution (a simple
unary convolution over a sequence of maps could possi-
bly suffice). However, for the present, this information
is precomputed and offered as an additional input for
the agent.

We made experiments with two different kinds of
memory (not yet used in conjunction):

• Heatmap channel This is a long-term memory pro-
viding a heat-map of past positions; the color in-
tensity represents the number of times the agent
walked over a tale.

• Snake-like channel This is a short-term memory
with a fading-away, Snake-like representation of
the most recent rogue positions.

Both maps have their own advantages: the long-term
map helps to avoid cycling, while the short term map
improves mobility.

4.1.3 Network model
After several experiments, all documented in the

code, we ended up in a network architecture exploiting
three Towers (see Fig. 3) processing the input at dif-
ferent levels of details; their results are merged together
and subsequently elaborated via dense layers.

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 150 Volume 2, 2017

32x1x1

 Max pooling

32 32

 Convolution

 Dense layer

5x1

32x1x1

32x1x1

32 32
5

96x32

64 32

32x5

Figure 3: A three Towers model

All towers have a similar mechanism: they per-
form small (3x3, or 5x5) convolutions on the input and
then apply a global maxpooling to focus on the pres-
ence/absence of the given feature. The agent learns very
rapidly to synthesize features comprising the rogue, and
the other entities of interest, hence implicitly focusing
its attention on the rogue, with no need to understand
his position on the map.

The difference between the various maps is just in
the different level of detail at which the input is pro-
cessed. Currently, this is obtained by a progressive, ini-
tial maxpooling of the input, but other techniques can
be experimented, in particular progressively augment-
ing the size and stride of convolutions.

4.1.4 Experience memory
At first we used a standard FIFO strategy for cre-

ating experience memory. However, the FIFO queue
of past transitions turned out to be full of many useless
or replicated states. Moreover the ratio of negative re-
ward transition to positive reward ones was very high,
this is because especially in the early stages of train-
ing when the exploration is totally random, discover-
ing a new part of the map is hard. Usually the useless
and replicated states are negative ones, often the ones
in which the agent is stuck on a wall, so this two prob-
lems can be solved with a single solution. Instead of
a FIFO queue we filtered the value that were being in-
serted into the history taking all positive values but only
a percentage of the negative ones. This new strategy
greatly improved results.

4.1.5 Evaluation
Since our focus was on exploration, the evaluation

module takes only that into account. It currently com-
putes the score summing all visited tiles on every level

the rogue manages to reach. We’re using this module
mainly during training (a graph with all the scores of a
training session can be seen in Fig. 4a) to keep track
of the average score and to save the best weights by
these standards. Fig. 4b shows how the average score
rises during a training of more than two thousand games
with three million agent actions. Analyzing the graph
is interesting since it shows when the agent had some
’breakthrough’ in its learning, with the steep rises in
average corresponding to the moments where it learned
to consistently exit a room or descend a stairs. It also
shows the limit of our current model.

4.2 Training on static memories
Training a DQL agent is a time-expensive opera-

tion. Some of this time is taken by the actual training
and there is no shortcoming for it, but a huge chunk of
it is taken by the environment simulation.

If stored, the transition history created by the agent
can be reused over and over for testing different mod-
els without simulating the actions again, saving a lot of
time.

4.3 Rog-o-matic supervised learning
As seen in the last section an agent can be trained

using a pre-built history. This pre-built history doesn’t
have to be built by the Reinforcement learning agent, it
can also come from other sources such as human expert
players or hard-coded agents. For example, we can use
Rogueinabox to run Rog-o-matic [23] an hard-coded
agent that has been proved able to win at Rogue.

Even if this tool wasn’t used for the purposes of
this paper the agent is provided with Rogueinabox and
could easily be used in later works to improve the be-
havior of a Reinforcement learning agent.

5 Source Code
Rogueinabox is free, open-source software un-

der the terms of the GNU General Public License.
The source code for the agents, state representa-
tions, reward functions, network models and all
other modules used in our experiments is also avail-
able on the git repository page for Rogueinabox
github.com/rogueinabox/rogueinabox. Rogueinabox is
written in Python, this choice was made both for the
ease of use of the language and for the wide amount
of deep learning libraries and tools already available.
Keras [22] was chosen as a machine learning frame-

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 151 Volume 2, 2017

(a) Scores (b) Average score

Figure 4: Agent scores and their average during a training session.

work, supporting both Theano [26] and Tensorflow
[27], it stands out for it simple prototyping and ease
of use. As of July 2017, we have been working on the
codebase (which consists of more than four thousand
lines of code) for 5 month.

6 Conclusion and future work
In this work, we introduced Rogueinabox: a new

Reinforcement learning environment to interact with
the well known and celebrated Rogue game, precursor
of all the rogue-like genre. Rogueinabox was exten-
sively tested through the development of a large num-
ber of QLearning agents playing the game, who helped
driving the evolution and tuning of the tool.

Rogueinabox can be improved in many different
ways, and we are especially open to collaboration.
More feature and modules can be added; some tech-
nical problems in the interface with Rogue, possibly re-
quiring a deeper integration with Rogue’s source code,
must be solved.

As for the agent themselves, while their behavior
is still far from being satisfactory, a set of interesting
milestones was achieved. The recently introduced eval-
uation mechanism will eventually help to better moni-
tor future advancements, in a precise and documentable
way.

As we already mentioned, we plan to tackle the
memory issue of the agent, either by means of recur-
sive networks (LSTM or GRU) or some different mech-
anism. We also plan to continue our experimentation of
new networks architectures, possibly testing different
and more sophisticated forms of attention.

The agent must also be extended to perform new

tasks, such as fighting monsters or retrieving equip-
ment, both as isolated objectives or in conjunction with
what it already knows.

The training speed could also be improved; faster
training speed means faster research and faster ad-
vances. We showed how training on a pre-built history
can speed up learning (but with increased risk of overfit-
ting), in the future the learning algorithm could also be
improved using asynchronous methods and CPU train-
ing (instead of GPU), as shown here [28].

References:
[1] B. Edwards, “The ten greatest pc games

ever,” http://www.pcworld.com/article/158850/
best pc games.html, 2009.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and
M. Bowling, “The arcade learning environment:
An evaluation platform for general agents,” J.
Artif. Intell. Res. (JAIR), vol. 47, pp. 253–279,
2013. [Online]. Available: http://dx.doi.org/10.
1613/jair.3912

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schnei-
der, J. Schulman, J. Tang, and W. Zaremba, “Ope-
nai universe,” https://github.com/openai/universe,
2016.

[4] ——, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/
1606.01540

[5] M. Kempka, M. Wydmuch, G. Runc, J. Toczek,
and W. Jaskowski, “Vizdoom: A doom-based
AI research platform for visual reinforcement

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 152 Volume 2, 2017

learning,” CoRR, vol. abs/1605.02097, 2016.
[Online]. Available: http://arxiv.org/abs/1605.
02097

[6] V. Cerny and F. Dechterenko, “Rogue-like
games as a playground for artificial intelligence–
evolutionary approach,” in International Confer-
ence on Entertainment Computing. Springer,
2015, pp. 261–271.

[7] krajj7, “Bothack,” https://github.com/krajj7/
BotHack, 2015.

[8] R. S. Sutton and A. G. Barto, Introduction to Re-
inforcement Learning, 1st ed. Cambridge, MA,
USA: MIT Press, 1998.

[9] M. Wiering and J. Schmidhuber, “Solving pomdps
with levin search and EIRA,” in Machine Learn-
ing, Proceedings of the Thirteenth International
Conference (ICML ’96), Bari, Italy, July 3-6,
1996, L. Saitta, Ed. Morgan Kaufmann, 1996,
pp. 534–542.

[10] D. Wierstra, A. Förster, J. Peters, and J. Schmid-
huber, “Solving deep memory pomdps with re-
current policy gradients,” in Artificial Neural Net-
works - ICANN 2007, 17th International Confer-
ence, Porto, Portugal, September 9-13, 2007, Pro-
ceedings, Part I, ser. Lecture Notes in Computer
Science, J. M. de Sá, L. A. Alexandre, W. Duch,
and D. P. Mandic, Eds., vol. 4668. Springer,
2007, pp. 697–706.

[11] A. Tamar, S. Levine, and P. Abbeel, “Value
iteration networks,” CoRR, vol. abs/1602.02867,
2016. [Online]. Available: http://arxiv.org/abs/
1602.02867

[12] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[13] F. A. Gers, J. Schmidhuber, and F. A. Cummins,
“Learning to forget: Continual prediction with
LSTM,” Neural Computation, vol. 12, no. 10,
pp. 2451–2471, 2000. [Online]. Available: https:
//doi.org/10.1162/089976600300015015

[14] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio,
“Gated feedback recurrent neural networks,” in
Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, ser. JMLR Workshop and

Conference Proceedings, F. R. Bach and D. M.
Blei, Eds., vol. 37. JMLR.org, 2015, pp.
2067–2075. [Online]. Available: http://jmlr.org/
proceedings/papers/v37/chung15.html

[15] M. J. Hausknecht and P. Stone, “Deep recurrent
q-learning for partially observable mdps,” CoRR,
vol. abs/1507.06527, 2015. [Online]. Available:
http://arxiv.org/abs/1507.06527

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015. [Online]. Available:
https://doi.org/10.1038/nature14236

[17] G. Lample and D. S. Chaplot, “Playing FPS
games with deep reinforcement learning,” in
Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., S. P. Singh and
S. Markovitch, Eds. AAAI Press, 2017, pp.
2140–2146. [Online]. Available: http://aaai.org/
ocs/index.php/AAAI/AAAI17/paper/view/14456

[18] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu, “Spatial transformer networks,”
in Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds., 2015, pp. 2017–2025.
[Online]. Available: http://papers.nips.cc/paper/
5854-spatial-transformer-networks

[19] E. Shelhamer, J. Long, and T. Darrell, “Fully con-
volutional networks for semantic segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, 2017. [Online]. Available:
https://doi.org/10.1109/TPAMI.2016.2572683

[20] M. McPartland and M. Gallagher, “Creating a
multi-purpose first person shooter bot with rein-
forcement learning,” in Proceedings of the 2008
IEEE Symposium on Computational Intelligence
and Games, CIG 2009, Perth, Australia, 15-18
December, 2008, P. Hingston and L. Barone, Eds.
IEEE, 2008, pp. 143–150. [Online]. Available:
https://doi.org/10.1109/CIG.2008.5035633

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 153 Volume 2, 2017

[21] B. Tastan, Y. Chang, and G. Sukthankar,
“Learning to intercept opponents in first person
shooter games,” in 2012 IEEE Conference on
Computational Intelligence and Games, CIG
2012, Granada, Spain, September 11-14, 2012.
IEEE, 2012, pp. 100–107. [Online]. Available:
https://doi.org/10.1109/CIG.2012.6374144

[22] F. Chollet et al., “Keras,” https://github.com/
fchollet/keras, 2015.

[23] M. L. Mauldin, G. Jacobson, A. Appel, and
L. Hamey, “Rog-o-matic: A belligerent expert
system,” in Fifth Biennial Conference of the Cana-
dian Society for Computational Studies of Intelli-
gence, London Ontario, May 16, 1984., 1984.

[24] B. Harrison. Angband borg. [Online]. Available:
http://www.thangorodrim.net/borg.html

[25] M. J. Hausknecht and P. Stone, “The impact
of determinism on learning atari 2600 games,”
in Learning for General Competency in Video
Games, Papers from the 2015 AAAI Workshop,
Austin, Texas, USA, January 26, 2015., ser.
AAAI Workshops, M. Bowling, M. G. Bellemare,
E. Talvitie, J. Veness, and M. C. Machado,
Eds., vol. WS-15-10. AAAI Press, 2015.
[Online]. Available: http://aaai.org/ocs/index.
php/WS/AAAIW15/paper/view/9564

[26] Theano Development Team, “Theano: A Python
framework for fast computation of mathematical
expressions,” arXiv e-prints, vol. abs/1605.02688,
May 2016. [Online]. Available: http://arxiv.org/
abs/1605.02688

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software avail-
able from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves,
T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for
deep reinforcement learning,” CoRR, vol.
abs/1602.01783, 2016. [Online]. Available:
http://arxiv.org/abs/1602.01783

Andrea Asperti et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 154 Volume 2, 2017

	Introduction
	Relevance for Machine Learning
	POMPD nature
	No level-replay
	ASCII graphics
	Memory
	Attention
	Complex and diversified behaviors

	Rogueinabox Modules
	Rogue wrapper
	State representation
	Reward functions
	Evaluation
	Network models
	Experience memory
	Agents
	Logging
	UI

	Training the agent
	Deep QLearning Agent
	Reward function
	State representation
	Network model
	Experience memory
	Evaluation

	Training on static memories
	Rog-o-matic supervised learning

	Source Code
	Conclusion and future work

