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Abstract: - This paper presents a discrete model of the dynamics of infectious disease expansion and builds a 
link between two conceptually different approaches of the Susceptible-Infectious-Susceptible (SIS) model: the 
continuous one, depicted by traditional simulation of ordinary differential equations (ODE), and ours, based on 
both connectivity between individuals and a local binary rule. The connectivity fixes the possible contacts 
between people and the rule defines whether the contacts are infective or not. The population confines in a grid 
and contagion extends from the infected centre cell by applying the rule, following the connectivity pattern. 
Our model provides parameters to tune the rate at which susceptible hosts become infected and the rate at 
which infected hosts become susceptible. The model has been analyzed and successfully compared to the SIS 
deterministic compartmental model 
 
Key-Words: - Infectious disease expansion, SIS, deterministic compartmental models, ODE, neighbour binary 
rules, connectivity.  
 

1 Introduction 

The modeling of infectious diseases is a tool used to 
study the mechanisms by which diseases spread, in 
order to predict the future course of an outbreak and 
to evaluate strategies to control an epidemic [1]. In 
1662, J. Graunt was the first scientist who tried to 
quantify causes of death by studying listings of 
numbers and causes of deaths published weekly. In 
1766, D. Bernouilli created a mathematical model to 
defend the practice of inoculating against smallpox 
[2]. The calculations from this model showed that 
universal inoculation against smallpox would 
increase the life expectancy for more than 3 years 

[3]. In 1911, Ross [4] demonstrated that malaria is 
produced by the bite of a mosquito. His 
mathematical model of expansion based on a set of 
equations approximated the discrete-time dynamics 
of malaria and asserted it is possible to control the 
disease whenever the population of mosquitos is 
reduced below a threshold. Between 1927 and 1939 
Kermack and McKendrick [5, 6] published papers 
on epidemic models. Their approach was a simple 
deterministic compartmental model which obtained 
the epidemic threshold that the density of 
susceptibles must exceed for an epidemic outbreak 
to occur. This model includes three states, the S 
(Susceptible), I (Infectious) and R (Recovered) 
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instead of the two, S and I, of the Bernouilli’s 
model. The model was successful in predicting the 
behavior of outbreaks very similar to that observed 
in many recorded epidemics [7]. The SIS model can 
be easily derived from the SIR model by simply 
considering the individuals recover with no 
immunity to the disease that is, individuals are 
immediately susceptible once they have recovered. 
Our model aims to establish a link between 
traditional simulation of the Susceptible-Infectious-
Susceptible (SIS) model based on ordinary 
differential equations (ODE), and a very simple 
approach based on both connectivity between 
people defined by means of their neighbourhood 
type, and a set of elementary local rules that define 
the result of these contacts. Following the 
introduction, Section 2 analyses the deterministic 
SIS model solved by ODE. Section 3 is devoted to 
present our model, which considers the population is 
confined in a square lattice. The neighbourhood is 
defined by means of the connectivity type. In this 
research we have considered 4-neighbours, 8-
neighbours and knight connection. The contacts 
between neighbours are performed by local binary 
rules that are tailored to model different situations 
such as Susceptible or Infected, with or without 
capability to infect further. The results are compared 
with those of the simulation of ODE. Section 4 
presents a discussion upon the suitability of the 
model and proposes future research. Section 5 
summarizes the work and presents concluding 
remarks. 
 

2 The Deterministic SIS Model 
 
The deterministic SIS model derives easily from the 
SIR model [8]. It is depicted by a system of ODE 
shown in (1). 
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As for the the Kermack-McKendrick (or SIR 
model), the SIS model assumes that the population 
size, N, is fixed (i.e., no births, deaths due to 
disease, nor deaths by natural causes) and 
incubation period of the infectious agent is 
instantaneous. The population is divided here into 
two health states: susceptible to the infection 
(denoted by S), Infected (denoted by I). There is no 
recovered state (R) because the SIS model does not 
provide immunity, that is, individuals are 

immediately susceptible once they have recovered. 
The rate at which susceptible hosts become infected 
is a product of the number of contacts each host has 
per unit time, r, and the probability of transmission 
of infection per contact, β. The rate at which 
infected hosts become susceptible is .  The total 
population size is N = S + I.  
The analytical solution of the system is as follows. 
See Equations (2). 
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Fig. 1. represents the simulation of the deterministic 
SIS model. In the equations the values are r=5; 
=0,2; N=100; 1000 and S(0)=99; 999, respectively; 
I(0)=1, =0,2; 0,5 and 0,8.  Horizontal axis stands 
for the time (generation number) and vertical axis 
stands for the number of individuals. 
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Fig.1. Simulation of the deterministic SIS model. 

We draw empirically some conclusions; 
 For = 0,5 both the number of Susceptible 

and Infected converge to the same steady state 
value N/2, when the equilibrium is reached. 

 For  0,5 although the number of 
Susceptible decreases it is always greater than 
the number of Infected that increases.  

 For  0,5 the number of Susceptible 
decreases and becomes smaller than the 
number of Infected that increases. That means 
the plotted graphics are crossed. 

 The time to reach the steady state for I(t) and 
S(t) (horizontal assymptote) increases when 
increases, for the same value of N.  

 The time to reach the steady state for I(t) and 
S(t) (horizontal assymptote) increases when 
Nincreases for the same value of  

3 Our Approach of the SIS Model 

Our approach of the SIS model is based on both a 
concrete connection between individuals set by a 
particular neighbourhood pattern which fixes the 
possible contacts between individuals, and a local 
binary rule that defines whether the contact is 
infective or not. This rule is implemented by a 
binary operation to set the results of the contacts 
between 0 and 1, as shown by Equation 3. 

ia y)R(x,y)(x,       

}1,0{}1,0{ x }1,0{:R




  (3) 

where ai  {0, 1} and i  [0, 3]; 
RaRa1Ra2Ra0.  

 
So we can define 24 =16 different local rules 

depending of the values of the sequence a3 a2 a1 a0. 
Let m stand for the number of a particular rule, Rm. 
This number has binary representation, that is to say 
m = a3 a2 a1 a0, m [0, 24-1]. As an example, if we 
consider m=6 we will have a3=0; a2 =1; a1=1 and 
a0=0. In this research we have considered three 
types of connectivity defined by a neighbourhood 
relationship on a square nxn-sized grid.  The Von 
Neuman neighbourhood is composed of a central 
cell and its four adjacent cells (4-neighbours, 
horizontal and vertical connection). The Moore 
neighbourhood is composed of a central cell and the 
eight cells surrounding it (8-neighbours, horizontal, 
vertical and diagonal connection). Finally, the 
knight neighbourhood follows the “L” pattern, i.e. 
moving two squares horizontally then one square 
vertically, or moving one square horizontally then 
two squares vertically. For the implementation of 
the SIS model we are interested in rule R6 because 
we have R6R6which models 
both the contagion mode triggered by the value 1 
(changes 0 to 1, from the centre of the grid filled 
with 0 values) and the healing mode triggered also 
by the value 1 (changes 1 to 0). Then we have 
R6andR6which means the value 
0 has no effect on 0 nor 1. Fig. 2.  shows the 
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contagion/healing process for the SIS model in a 
5x5 grid for a Von Neumann neighbourhood. We 
assume that the healing process always begins at 
t+2, that is, 2 generations after the contagion. 

 
 

 
 
 
 
 
 

t=0 (one infected in the  
centre of the grid). 
 

0 0 0 0 0 
0 0 0 0 0 
0 0 1 0 0 
0 0 0 0 0 
0 0 0 0 0 

 
 
 
 
 
 
 

t=1 (4 new infected hosts). 

0 0 0 0 0 
0 0 1 0 0 
0 1 1 1 0 
0 0 1 0 0 
0 0 0 0 0 

 
 
 
 
 
 
 

t=2 (8 new infected hosts.       
The host infected at t=0 is now 
susceptible) 

0 0 1 0 0 
0 1 1 1 0 
1 1 0 1 1 
0 1 1 1 0 
0 0 1 0 0 

 
 
 
 
 
 
 

t=3 (8+1 new infected hosts. The 
host infected at t=0 and 
susceptible at t=2 is infected 
again. The hosts infected at t=1 
are now susceptible.)  

0 1 1 1 0 
1 1 0 1 1 
1 0 1 0 1 
1 1 0 1 1 
0 1 1 1 0 

 
 
 
 
 
 
 

t=4 (4+4 new infected hosts. The 
hosts infected at t=2 are now 
susceptible as well as the host 
infected at t=0) 

1 1 0 1 1 
1 0 1 0 1 
0 1 0 1 0 
1 0 1 0 1 
1 1 0 1 1 

 

Fig.2. Contagion/healing process for the SIS model in a 5x5 grid for a 
Von Neuman neighborhood 

 
Fig.3. plots the evolution of the number of 
Susceptible/Infected hosts vs. time. In this case we 
have a 10x10 grid and the three types of 
connectivity. We assume here that the healing 
begins at t+2, that is to say 2 generations after the 
contagion.  
 

 
Fig.3. Number of Susceptible/Infected hosts vs. time in the case of a 

10x10 grid for the three types of connectivity (healing begins 2 
generations after contagion) 

 
We observe in the graphics Fig.3. that the three 
types of connectivity cause more or less crossing of 
the Susceptible and Infected curves that always 
reach the steady state with the value N/2. The Von 
Neumann neighbourhood for a grid of 10x10 shows 
similarity with the deterministic model for N=100 
and = 0,5. In order to study the influence of the 
time it takes for an infected host to become 
susceptible again, we analyze the process assuming 
that the healing begins at t+3 and at t+1, that is, 3 or 
1 generation after the contagion, respectively. See 
Fig.4. and Fig.5. 
 

 
 
Fig.4. Number of Susceptible/Infected hosts vs. time, 10x10 grid,  Von 
Neumann neighbourhood (healing begins 3 generations after contagion) 
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Fig.5. Number of Susceptible/Infected hosts vs. time, 10x10 grid, Von 
Neumann neighbourhood (healing begins 1 generation after contagion) 

 

In Fig.4. and Fig.5. we observe that the longer 
the time for healing, the longer it takes to reach the 
value N/2, and the shorter the time, the less 
important is the crossing of the curves. Fig. 5. 
exhibits the strongest similarity with the 
deterministic model for N=100 and = 0,5. Although 
a deeper analysis is needed in order to better assess 
our model, it appears that our approach can meet 
most of the results provided by the deterministic SIS 
model.  

4 Discussion 

This empirical approach builds a link between two 
conceptually different models: the continuous and 
discrete one. Table 1 links the corresponding 
parameters.   The two main contributions of our 
model are the rate at which susceptible hosts 
become infected (rwhichis implemented in our 
model by the combination of a neighbourhood type 
and a local rule, and the rate at which infected hosts 
become susceptible (which is carried out by the 
delay between contagion and healing.  

 
 Parameters Deterministic 

SIS model 
Our SIS model 

Population size N nxn grid 
The rate at which 
susceptible hosts 
become infected  

r Neighbourhood type + 
Rm 

S(0) N-1 nxn-1 
I(0) 1 1 
The rate at which 
infected hosts become 
susceptible  

 Delay between contagion 
and healing 

 
Table 1. Comparison between the parameters of the models  
 

We have also pointed out the influence of this delay 
on the time to reach the steady state value and the 
more or less crossing curves. Some questions that 
have not been considered in this paper will be 
considered in future research, such as the 

stabilization at different steady state values for 
Susceptible and Infected, or the combination of 
different local rules, or the definition of new 
neighbourhood relationships. 
 

5 Conclusion 

This paper is based on previous own research [8, 9], 
which aims to establish a link between traditional 
deterministic models of infectious disease expansion 
and a very simple approach based on both 
connectivity between people, defined by means of a 
neighbourhood type, and a set of elementary local 
rules that define the result of these contacts. The 
initial satisfactory results encourage to pursue the 
improvement of the model to apply to real 
scenarios. 
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