Software Development Effort Estimation by Using Neural Networks – A Case Study

Tuğçe Uğurlu Altuntaş1, S. Emre Alptekin2*
1Institute of Science, Industrial Engineering Program
2Industrial Engineering Department
*corresponding author
Galatasaray University
Ciragan Cad. No.36 34357 İstanbul
TURKEY
ugurlut@gmail.com, ealptekin@gsu.edu.tr

Abstract: - The software industry is growing rapidly and gaining importance all over the world. Nearly all companies and institutions from various industries have software projects to develop new applications and platforms. As required with every project, accurate effort estimation has become a crucial problem for the companies, especially for project managers. Since 1970s different methods and models have been developed for estimating software projects’ efforts. The first milestone model was COCOMO, which is a constructive method proposed in the late 1970s. Many different models followed, the most popular and usable models being Function Point and Use Case Point. After 2000s, due to advances in technology, Artificial Neural Networks has gained in importance especially among the problem domains that benefit from data analysis and self-learning. Software development effort estimation also share similar characteristics as there is typically old projects’ data on hand that should help foresee new projects’ efforts. Therefore, in this paper we build a software estimation model by using neural network methodology. The features for the network were chosen as a result of an extensive survey. The applicability of the methodology is demonstrated via real-life software project data provided by one of the largest banks in Turkey.

Key-Words: - Software development effort estimation, neural networks, back propagation algorithm

1 Introduction

A project is a temporary endeavor with a beginning and an end which creates a unique product or service [1]. An effort estimation is a prediction of how long a development activity will take to finish [2].

Since software industry and digitalization gained in importance, software effort estimation became the most important problem for IT companies. McKinsey and Oxford University’s study showed that 66 percent of the large software project is over budget and 33 percent is over schedule, also 17 percent of the IT projects gone so bad that the existence of the company is threatened [3].

Both under and over estimation results in waste of time, resources, money and even lost prestige. According to Brode and Khalkar underestimating the costs is characterized by budget overruns, under developed functions and poor quality end-product [4]. Similarly, overestimation commits too many resources to the projects and could lead to lost contracts could mean lost jobs. Rita Mulhacy defines the term “padding”, which is related with overestimating, as a sign of poor project management which can damage reputation of a project manager [5].

Since 1970s many studies and methods have been published to overcome software project effort estimation problems. All the methods aim to estimate efforts accurately. Here, estimation accuracy simply defines the comparison of the estimate to the actual effort that is known after the task has been finished [2]. COCOMO is the first algorithmic effort estimation model studied in late 1970s. After COCOMO, Use Case Point and Function Point methods have become de facto standard for accurate software efforts estimation.

Since 2000s, artificial intelligence and especially neural networks are noticed by the software industry for their ability to handle complex relationships between inputs (factors/features) and outputs (estimated effort). Neural networks in this context define a supervised learning model which uses historical data to explain the relationship between...
inputs and outputs with the help of so called training algorithms and produce outputs for the new scenarios without subjective manual calculations and adjustments. The model potentially improves itself by each new data added to retrain the network.

In this paper, a feed forward neural network model will be proposed to estimate software projects’ efforts accurately for the software project department at one of the largest banks in Turkey. Two different learning algorithms will be applied to obtain the best output with the minimum error. The findings will be compared with the current approaches applied by the organization.

The remainder of the paper is organized as follows: in Section 2, related work is summarized. Section 3 presents the methodologies that form the proposed model. The data gathering process and obtained results as part of model evaluation are given in Section 4. Section 5 concludes the study discussing the findings and further study possibilities.

2 Related Work

Software project effort estimation is a continuous activity starting with the initiation phase and continuing until closing phase [4]. There are a lot of software cost estimation methods. Although different groupings are found in the literature, three categories are usually used to classify estimation methodologies: Expert judgement, algorithmic estimation and learning based estimation.

The most common used estimation approaches are expert judgement based methods in software industry [6]. Since, at the beginning of the projects, project team does not have a proper data to estimate the cost, expertise based methods are preferred by companies. Expert judgement based methods generate cost estimations based on experts’ or project team’s opinions. According to Leinonen, expert judgement estimation can be used if there is no quantified data for the project [4].

Also lack of time is another reason to choose expert judgement based approaches. Thus, taking less time and without gathering detailed data are the main advantages of expert judgement methods. The main disadvantage is, as Boehm states, even if a person has experience, this does not mean that his/her estimates are accurate [7]. Furthermore, in real life scenarios, there are many unknowns about project team members, who are estimators, make the assumption and double it. This is usually considered as a sign of padding which indicates poor project management [5].

Algorithmic effort estimation methods consist of mathematical models or calculations to provide effort estimation [8]. Most of the algorithmic estimation models use project size, environmental and/or technical factors to calculate projects’ costs. Depending on the model, calculation procedure varies. In some models, source of line codes (SLOC) is used, whereas others use function or use case points. Also, factors and cost drivers are not common among different methods. COCOMO and Use Case Point are the most acknowledged methods in algorithmic effort estimation models.

The Constructive Cost Model (COCOMO) is an algorithmic effort estimation model developed by Barry W. Boehm in the late 1970s. The model is based on project size in SLOC and factors which are obtained from 63 projects’ data. In 1997, COCOMO II was developed as a successor of COCOMO. ‘COCOMO II is a parametric cost estimation model that requires size, product and personnel attributes as inputs and outputs the estimated effort in Person-Months (PM)’ [9]. In COCOMO II, software projects are classified into three groups as organic, semi-detached and embedded projects. Organic projects are the projects, which are made of small teams or have few domains with good experience. Semi-detached projects are made of medium sized teams and have mixed experience among team members. Embedded projects are the projects, which have strict constraints, many domains and hardware, software and operational needs. Each project type has different coefficients for effort estimation. Moreover, in COCOMO II there are four types of cost drivers; product attributes, hardware attributes, personnel attributes and project attributes. These cost drivers also referred to as effort multipliers have scale factors from very low to very high. According to scaling, each attribute has a unique coefficient just like project types.

Use Case Point (UCP) method is an effort estimation model based on use cases, actors, technical and environmental factors. ‘A use case captures a contract between the stakeholders of a system about its behaviour. The use case describes the system’s behaviour under various conditions as the system responds to a request from one of the stakeholders, called primary actor’ [10]. The main input of UCP method is use cases. Generally, in medium and large size projects there are many use cases and each use case has different number of
steps. In UCP method to calculate unadjusted use case weight (UUCW) the use cases of the projects are grouped into simple, average and complex groups according to their step numbers. Each group has different weights. After calculating UUCW, unadjusted actor weight (UAW) is calculated. In a software project, there can be many different types of actors like client, customer, database, GUI etc. Similar to UUCW calculation, actors are grouped into three categories; simple, average and complex. Likewise, each group has different weights. Next, technical (TCF) and environmental (ECF) complexity factors are calculated. In total, there are 13 technical and 8 environmental factors. Once again, each factor has a different weight.

Learning based effort estimation models use current knowledge and historical data of the projects. As Gabrani and Saini stated, learning based methods are trying to imitate natural evolution and they are refining until finding an optimal solution, so evolutionary learning based methods became popular in recent years [11]. Artificial neural network (ANN) is the most widely applied model under the umbrella terms Artificial Intelligence and Machine Learning. ANNs are preferred as they enable to model even complex non-linear relationships and are pretty much capable of approximating any measurable function without an explicit model of the system [12]. As their structure is based on an abstraction of human brain, ANNs are able to learn and adapt to different conditions. A typical ANN as is made up from nodes in three layers; input layer, hidden layer(s) and output layer as shown in Figure 1 [13].

![Fig. 1. A Fully Connected Two Layer Feedforward Network](image)

Each input layer node is connected to the next hidden layer nodes and each hidden layer node is connected to the next one ending with the output layer node. Nodes in the input layer, hidden layers and output layer and hidden layer numbers may change depending on the problem. Each connection between nodes represents a weight. Input layer represents the input data for learning algorithm.

Hidden layer and output layer use the data from previous layer and combine them with the corresponding weights to trigger a so called activation function. The output layer combines all the outputs generated by the activation functions and outputs a value once again using an activation function. There are various activation functions used in the literature, linear, sigmoid, Gaussian, etc.

There are different types of learning algorithms for ANNs. One of the most popular types is multi-layer perceptron with the combination of feed-forward and back-propagation algorithms. Feed forward computation uses the input and the hidden layer nodes to compute output value [14]. Back-propagation is used to correct the errors made during the feed-forward phase. The algorithm iteratively adjusts weights starting from the output layer towards the input layer. When errors values reach target values, the back-propagation algorithm is ended [14]. The resulting trained network with the associated weights is ready to be used for new inputs.

In this context, ANNs are used to calculate estimated software project efforts. Since it is a learning based model, with enough previous project data and feature set, the model can predict accurately project efforts. Compared to other effort estimation models, ANNs have an important advantage, as they are trained using a company’s own data, they can estimate project cost more accurately for a specific company then a generic model with a standard set rules. Moreover, ANNs do not need an implicit or complete programming as required by regression based methods.

In this paper, selected historical projects’ data will be used to build an ANN model.

3 Proposed Methodology
The aim of this study is to build an ANN and use the network to estimate software projects’ efforts. As detailed in previous sections, an ANN depend on input variables to make the estimation. In order to build an ANN, five input variables are identified through preliminary data analysis using surveys and interviews. This initial step is required as ANNs actually mimic the decision making process of experts by replacing the expert opinion with a black-
box approach. Therefore, software project managers of one of the largest bank in Turkey are consulted in order to define the basic information that is needed for software effort estimation. The relationship between these inputs and the corresponding effort estimation is handled by the trained ANN. For training purposes, 77 IT projects’ data is obtained from the bank’s Project Management department.

Input variables (parameter) selection is one of the most important tasks to estimate software projects’ efforts accurately. In literature, for algorithmic models, different factor groups and variables are used. Generally, they are grouped into two categories as ‘Technical Factors’ and ‘Environmental Factors’. In this study, Use Case Point, Function Point Analysis and Jensen Model’s factors are considered to be used as input to our proposed ANN model.

In UCP method, there are two types of factors categorized as technical and environmental. Technical factors define 13 parameters and environmental factors consists of 8 parameters. Similarly, to build a Value Adjustment Factor (VAF), 14 ‘General System Characteristics’ (GSCs) are used in Function Point Analysis (FPA) [15]. General system characteristics are also known as technical factors. GSCs has some common factors with UCP technical factors. Jensen model is a software development schedule/effort estimation model which incorporates the effects of any of the environmental factors impacting the software development cost and schedule [16]. Jensen model defines 13 environmental factors. In our case, besides UCP, FPA and Jensen Model parameters, 5 additional parameters are considered to have an effect on project effort estimation as they are already used by the experts of the selected bank’s IT department.

In total, 53 factors from UCP, FPA, Jensen Model and expert opinions are considered as candidate inputs to the ANN model. As this list was too comprehensive and it would require a lot of project data to train the ANN, we consulted 6 expert project managers to evaluate the importance of these factors. As a result, 22 factors are identified as having a considerable effect on software project effort.

After the preselection, a survey is conducted on 19 IT experts to analyse the effect of the parameters according to expert opinions and to select the most relevant factors as input to ANN model. 22 preselected factors are scaled from “1-Irrelevant” to “5-Highly Relevant” according to the effect on software development effort estimation by the experts.

An ‘effect level’ is calculated based on the ratings of factors by IT experts. Weights are assigned to each scale range and by multiplying scale weight and experts’ choices, effect level is obtained.

\[
\text{Effect Level} = \sum_{i=1}^{5} w_i * c_i
\]

where \(i \) is the number of scale range from irrelevant to highly relevant, \(w \) is the weight of scale range and \(c \) is the number of choices for the factor. According to the effect level calculation, top 5 factors with the highest effect level are selected as the input factors to ANN model which are; “well defined and stable requirements”, “dependence in 3rd party company’s code”, “multiple domain integration”, “reusable code” and “complex security requirements”.

Effort estimation using ANNs defines parameters in order to find the optimal solution based on the input parameters as part of the training process. Complex relationships can be reproduced by ANNs based using appropriate weight calculation techniques [17]. The learning process within artificial neural networks is a result of changes in the network’s weights. The objective is to find a set of weights, which should map any input to a correct output [18]. Besides learning algorithm selection, also learning type and training function selection is also very important to create an ANN. According to problem and obtained data type, there are three main learning types; supervised learning, unsupervised learning and reinforcement learning [18].

In supervised learning, the desired output is provided along with the input values. When both input and output variables is provided in the neural network, and error based calculation is possible based on target output and actual output [18]. In unsupervised learning, only input variables are given and no output variable is defined. Unsupervised learning is able to find the structure or relationships between different inputs. The widely known examples for unsupervised learning are clustering, anomaly detection and blind signal separation. The third popular learning type is reinforcement learning, which is very similar to supervised learning. Reinforcement learning is defined as the problem of getting an agent to act in the world so as to maximize its rewards [18]. In this
In this paper, supervised learning is selected as the learning type for the effort estimation with 77 completed project data with input and actual output variables provided to create the ANN. Learning algorithms are used to obtain weights of each neuron and relationships between neurons and layers while training the ANN. The most widely known learning algorithm for supervised learning is multi-layer perceptron with feed-forward network and back-propagation learning.

Feed forward structure defines a straightforward network that associates inputs with outputs. There are many different types of Back Propagation functions which can be used for supervised learnings. Bayesian Regularization Back Propagation and Levenberg-Marquardt Back Propagation are the mostly adapted functions for back propagation algorithms.

In Levenberg-Marquardt, all weights are updated according to Levenberg-Marquardt optimization which is also known as Damped Least-Squares method. Damped Least-Squares method is used for solving non-linear least square problems, especially in least squares curve fitting. Similarly, in Bayesian Regularization, training function obtains all the weights of neurons by using Levenberg-Marquardt optimization. In addition to Levenberg-Marquardt optimization, squared errors and weights are minimized by Bayesian Regularization function and then function determines the correct combination to provide an ANN which generalizes well. This process is called Bayesian regularization [19]. Bayesian Regularization obtains a well-defined statistical problem from a nonlinear regression in the manner of ridge regression [19]. The benefit of Bayesian Regularization is that all available data can be used as training data, which means no test or validation set is needed [20]. Since ANN algorithm and nonlinear relationships are produced as a ‘black box’, it is not possible before hand to correctly identify which method will be superior, choose Bayesian Regularization or Levenberg-Marquardt Optimization. In this paper, both training functions will be applied to the ANN to train the network.

4 Model Evaluation

4.1 Data Preparation

Artificial Neural Networks are inspired by human brain’s nervous system. One of the most interesting character of human brain is ability to learn. Similar to human brain, ANNs learn and when they are learning they need historical data to create the complex nonlinear relationships between input and output variables.

In this study, an ANN has been created for software development effort estimation of projects, where each developed project is considered as one historical project. The project is created by a team member has spent on at the end of the projects, all projects’ accumulated actual effort is calculated from each resources’ time sheets. For the proposed ANN, actual effort is set as the target value.

Well defined and stable requirements”, “dependence in 3rd party company’s code”, “multiple domain integration”, “reusable code and complex security requirements” are the chosen input factors for the ANN model as mentioned before. Each factor is scaled to obtain input parameter values for the projects as shown in Table 1.

As a result, each historical project data has been graded for the 5 selected input variables and historical project data with actual effort is obtained.

4.2 Results

As detailed in data preparation section ANN is created with 5 chosen factors. Both Bayesian

<table>
<thead>
<tr>
<th>Factor Name</th>
<th>Scale Definition</th>
<th>Range of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-defined and stable requirements</td>
<td>From 1 to 5. 1 for weak defining/no stability, 5 for well-defined and stable requirements</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Dependence on 3rd party company's code</td>
<td>1 if there is a dependence on 3rd party code, 0 if not.</td>
<td>1 0</td>
</tr>
<tr>
<td>Multiple domain integration</td>
<td>Domain number. From 1 to n.</td>
<td>1 . . n</td>
</tr>
<tr>
<td>Reusable code</td>
<td>1 if projects need to be developed with reusable code, 0 if not.</td>
<td>1 0</td>
</tr>
<tr>
<td>Complex security requirements</td>
<td>From 1 to 5. 1 if the project doesn’t need any security developments, 5 for highly complex security needs.</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>
Regularity and Levenberg-Marquardt Optimization training functions are applied to ANN. 77 completed project data is used to train ANN with scaled input values and actual efforts. Project data is divided as training, validation and test data sets with the ratios %70, %15 and %15 in order.

Magnitude Relative Error (MRE) is used to compare training functions. With Levenberg-Marquardt Optimization training functions are applied to ANN. 77

Additionally, margin of error for the bank’s estimation with its own estimation technique is calculated by using bank’s initial effort estimation and actual effort. As a result, bank’s MMRE is found as %25.921. As a sample, 30 projects’ actual efforts, ANN estimations and the bank’s own estimations are shown in Table 2.

Table 2: Sample Project Effort Estimations

<table>
<thead>
<tr>
<th>Project No</th>
<th>Actual Effort</th>
<th>ANN - Bayesian Regularization</th>
<th>ANN - Levenberg-Marquardt Optimization</th>
<th>The Bank's Initial Estimation</th>
<th>ANN - Bayesian Regularization MRE</th>
<th>ANN - Levenberg-Marquardt Optimization MRE</th>
<th>The Bank's Estimation MRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>119</td>
<td>104.850</td>
<td>200.002</td>
<td>120</td>
<td>11.891</td>
<td>68.069</td>
<td>0.840</td>
</tr>
<tr>
<td>2</td>
<td>138</td>
<td>169.174</td>
<td>206.616</td>
<td>124</td>
<td>22.590</td>
<td>49.722</td>
<td>10.145</td>
</tr>
<tr>
<td>3</td>
<td>148</td>
<td>190.406</td>
<td>201.814</td>
<td>110</td>
<td>28.652</td>
<td>36.361</td>
<td>25.676</td>
</tr>
<tr>
<td>4</td>
<td>155</td>
<td>190.960</td>
<td>237.662</td>
<td>144</td>
<td>23.200</td>
<td>53.310</td>
<td>7.099</td>
</tr>
<tr>
<td>5</td>
<td>158</td>
<td>159.648</td>
<td>168.695</td>
<td>167</td>
<td>1.043</td>
<td>6.769</td>
<td>5.696</td>
</tr>
<tr>
<td>7</td>
<td>171</td>
<td>165.355</td>
<td>189.700</td>
<td>60</td>
<td>3.301</td>
<td>10.936</td>
<td>64.912</td>
</tr>
<tr>
<td>8</td>
<td>183</td>
<td>175.585</td>
<td>174.637</td>
<td>195</td>
<td>4.052</td>
<td>4.570</td>
<td>6.557</td>
</tr>
<tr>
<td>9</td>
<td>185</td>
<td>150.266</td>
<td>141.282</td>
<td>191</td>
<td>29.586</td>
<td>23.631</td>
<td>3.243</td>
</tr>
<tr>
<td>10</td>
<td>189</td>
<td>197.820</td>
<td>194.419</td>
<td>150</td>
<td>4.666</td>
<td>2.867</td>
<td>20.635</td>
</tr>
<tr>
<td>12</td>
<td>202</td>
<td>208.980</td>
<td>207.350</td>
<td>90</td>
<td>3.455</td>
<td>2.648</td>
<td>55.846</td>
</tr>
<tr>
<td>13</td>
<td>205</td>
<td>221.196</td>
<td>278.847</td>
<td>244</td>
<td>7.900</td>
<td>36.023</td>
<td>19.024</td>
</tr>
<tr>
<td>14</td>
<td>208</td>
<td>221.196</td>
<td>278.847</td>
<td>250</td>
<td>6.344</td>
<td>34.061</td>
<td>20.192</td>
</tr>
<tr>
<td>15</td>
<td>211</td>
<td>221.337</td>
<td>248.165</td>
<td>290</td>
<td>4.899</td>
<td>17.614</td>
<td>37.441</td>
</tr>
<tr>
<td>16</td>
<td>219</td>
<td>244.172</td>
<td>204.414</td>
<td>259</td>
<td>11.494</td>
<td>6.660</td>
<td>18.265</td>
</tr>
<tr>
<td>17</td>
<td>223</td>
<td>222.103</td>
<td>223.817</td>
<td>200</td>
<td>0.402</td>
<td>0.366</td>
<td>10.314</td>
</tr>
<tr>
<td>18</td>
<td>226</td>
<td>222.103</td>
<td>223.817</td>
<td>231</td>
<td>1.724</td>
<td>0.966</td>
<td>2.212</td>
</tr>
<tr>
<td>19</td>
<td>238</td>
<td>217.048</td>
<td>224.889</td>
<td>250</td>
<td>8.803</td>
<td>5.509</td>
<td>5.042</td>
</tr>
<tr>
<td>20</td>
<td>238</td>
<td>229.158</td>
<td>115.457</td>
<td>430</td>
<td>3.715</td>
<td>51.488</td>
<td>80.672</td>
</tr>
<tr>
<td>21</td>
<td>240</td>
<td>221.196</td>
<td>278.847</td>
<td>290</td>
<td>7.835</td>
<td>16.186</td>
<td>20.833</td>
</tr>
<tr>
<td>22</td>
<td>243</td>
<td>255.113</td>
<td>241.758</td>
<td>275</td>
<td>4.985</td>
<td>0.511</td>
<td>13.169</td>
</tr>
<tr>
<td>23</td>
<td>251</td>
<td>244.172</td>
<td>204.414</td>
<td>270</td>
<td>2.720</td>
<td>18.560</td>
<td>7.570</td>
</tr>
<tr>
<td>24</td>
<td>266</td>
<td>264.370</td>
<td>321.441</td>
<td>350</td>
<td>0.615</td>
<td>20.843</td>
<td>31.579</td>
</tr>
<tr>
<td>25</td>
<td>270</td>
<td>255.052</td>
<td>278.263</td>
<td>149</td>
<td>5.536</td>
<td>3.060</td>
<td>44.815</td>
</tr>
<tr>
<td>26</td>
<td>275</td>
<td>284.055</td>
<td>282.679</td>
<td>272</td>
<td>3.293</td>
<td>2.792</td>
<td>1.091</td>
</tr>
<tr>
<td>27</td>
<td>280</td>
<td>246.709</td>
<td>254.323</td>
<td>300</td>
<td>11.889</td>
<td>9.171</td>
<td>7.143</td>
</tr>
<tr>
<td>28</td>
<td>283</td>
<td>298.423</td>
<td>381.417</td>
<td>250</td>
<td>5.450</td>
<td>34.776</td>
<td>11.661</td>
</tr>
<tr>
<td>29</td>
<td>287</td>
<td>316.608</td>
<td>347.359</td>
<td>382</td>
<td>10.316</td>
<td>21.031</td>
<td>33.101</td>
</tr>
<tr>
<td>30</td>
<td>292</td>
<td>280.311</td>
<td>366.780</td>
<td>290</td>
<td>4.003</td>
<td>25.610</td>
<td>0.685</td>
</tr>
</tbody>
</table>

MMRE values of the Levenberg-Marquardt Optimization and the Bayesian Regularization are compared to find the best working ANN model. Since the error rate difference is significant, Bayesian Regularization is chosen as the optimum learning algorithm for the software project effort estimation neural network. According to McKinsey and Oxford University’s studies, on average, %66 of the large software project run over budget [3]. Considering a %66 error rate, %8.471 is a notably improved value. Similarly, comparing to the bank’s own initial estimation, which is based on the numbers of the components to be developed, ANN with Bayesian Regularization is producing more accurate results.

5 Conclusion

Software projects are essential tools of a typical organization to develop new applications and platforms. However, mostly due to inherent complexities of these projects combined with limited resources and time constraints, projects tend to overshoot initial resource estimations. Moreover, as software projects continually are added to the list of current tasks or changed to respond to changing customer needs and/or competitors’ offerings, accurate effort estimations are needed to manage resources efficiently/effectively. In literature, different methods and models have been proposed to calculate software projects’ efforts. Though, these approaches tend to fail in real life scenarios due to the fact that own organization based tailored
solutions are usually required to correctly estimate teams’ efforts.

Artificial neural networks with the ability to handle complex relationships and to adapt to changing conditions seem to attract a lot of attention recently. Software development effort estimation is one the areas that will benefit from adaptable and learning frameworks. Therefore, in this paper we build a software estimation model by using neural network methodology. The features for the network were chosen as a result of a survey realized at one of the largest banks in Turkey. The findings suggest that current approaches used at the bank mostly lack accuracy and ANN based methodology is handling the uncertainties and complexities pretty effectively and therefore is a superior approach than the classical algorithmic estimation models at least for the current scenario.

As future work, historical project data set could be extended to handle possible overfitting issues of the neural network model. Also, input variable set could be augmented by using other preselected factors. Similarly, to generalize effort estimation model, input variable selection surveys can be realized with IT experts from different sectors like telecom or insurance.

6 Acknowledgement
This research has been financially supported by Galatasaray University Research Fund, with the project number 16.402.015.

References:

