
 

 

An Intelligent Database System using Natural Language Processing 

  
Abstract: - – Enormous amount of data are being processed and exchanged in our daily life, and database, 
which is used to organize data has been an active research topic for a long time. Database plays a major role in 
many computer systems and there is always a demand from technical and nontechnical people to ease the 
process of accessing data on database. Using Natural Language to directly interact with a database is a nice and 
user friendly solution. In order to achieve this type of communication between the computer (In particular, 
database) and human we have to make the computer understand what the human asks, and then, be able to 
respond with the right answer that was expected to be extracted from the database.  
       In this paper we present an intelligent system for converting Natural Language queries into equivalent 
database Structured Query Language (SQL). Our system also allows processing complex Natural Language 
queries. We call this Intelligent Agent based Natural Language Interface to Database (INLIDB). The query 
results from the INLIDB is presented in an attractive succinctly viewable format. We have obtained 
encouraging results from INLIDB.  
 
 
Key-Words: - Natural Language Processing / Understanding, Semantic Parsing, Syntactic Parsing, Intelligent 
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1 Introduction 
Natural Language Processing (NLP)  has many 
applications that require either Natural Language 
understanding or Natural Language generation or 
even both - for example Machine Translation, which 
focuses on translating text from one human 
language to another automatically. Another good 
example of NLP is  Information Extraction which is 
concerned with “factual information in free text 
[1]”. This paper is concerned with one of the 
important applications of NLP, which is Natural 
Language Interface to Database (NLIDB). Figure 1 
from [2] shows the components of Natural 
Language Interface to Database. The idea of NLIDB 
systems came from the method of questioning the 
database that uses Natural Language queries like 
English instead of database language to query the 
database. 
    This paper is concerned with one of the important 
applications of NLP, which is Natural Language 
Interface to Database. The importance of NLIDB 
system is that it makes it easy for users with no 
programming experience to deal with a database. 

User can just use Natural Language to interact with 
a database which is very simple and easy. Also, the 
user would not need a special training on using such 
systems (maybe some training to know the 
interface). The user is not forced to learn any 
database language. It is hard to learn a formal query 
language like SQL by a naive or inexperienced user. 
Also, it is easier to use Natural Language in queries 
that involve multiple database tables. 
     The main objective of this paper is to make the 
use of database much simpler where the users can 
retrieve information using natural sentences by 
means of implementing an intelligent agent that can 
understand the user’s query and can generate the 
answer in a nice presentable way. 

2 Related Work 
NLIDB systems have started in the early 1980s or 
precisely in the 1970s. Since then, researchers have 
been very interested in developing these systems, 
and have always tried to find better solutions for the 
commercial applications. 
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       The main reason we need such systems is that 

they offer a  great  substitution for  people  who deal  
 

Figure 1: Components of NLIDB System. 
 
with Database on a daily or periodic basis where 
they are not required to learn the process of 
retrieving data  
using a database language like SQL. Rather, they 
only require their language that they use every day 
to communicate with people around them. 
        In general, the existing methods to interact with 
a database using NLP can be divided into three 
categories: (1) Pattern Matching Models or 
Template Based Approach. (2) Syntactic Models. 
and (3) Syntactic and Semantic Models. 
       In the first model, the entered query is 
processed by matching it with a predefined set of 
rules or patterns. The next step then translates it into 
a logical form according to what pattern it belongs 
to. From these rules, the database query is directly 
formulated. 
In the second model, a constituent syntactic tree 
using a syntactic parser is used [3] where the leaves 
are used in the process of mapping to a database 
query based on predefined syntactic grammars. In 
the third model, the use of semantics adds the 
intelligence concept, and the query is processed 
according to what it means. 
       Existing NLIDB systems vary from each other 
in the method they use to convert the query into a 
database language such as SQL. Generally, there are 
four steps to do the conversion: Lexical Analysis, 
Syntactic / Semantic Analysis, Query Generation 
and Answer extraction. 
        LUNAR [4] is one of the most known syntax-
based systems. It came in early seventies (1973). It 
is an English question answering system that 
answers questions about the chemical analyzes of 
the Apollo 11 moon rocks. It has three main parts: 
the first one is a general purpose grammar and a 
parser that covers a large subset of the language. 
The second part is a semantic analyzer to get the 

meaning from the question. The third part is 
database retrieval and inference component to store 
the data to be manipulated. The domain of the 
system is restricted to lunar geology and chemistry 
only. The main challenge they faced that there were 
only a few general-purpose NLP resources available 
at the time. 
       The research continued for another decade, 
where they focused on the syntactic parsing, 
incorporating domain knowledge, dialog systems 
and semantic parsing like in LADDER system [5]. 

3 Contribution 
The existing NLIDB systems cover different areas 
of linguistic and semantic parsing. Authors of 
existing NLIDB systems proposed different 
algorithms to handle a certain level of complexity, 
but the existing systems do not cover complex 
natural language queries with complex semantics. 
        We have designed and built an Intelligent 
NLIDB (INLIDB) that converts the queries from the 
Natural Language form to its equivalent Structured 
Query Language form. It starts with the Syntactic 
analysis performed by Stanford POS tagger. Then, 
The keyword extractor use the information from the 
POS tagger to extract the keywords that are used by 
the Named Entity Recognition tool. The Named 
entity Recognizer   defines the related domain 
concepts like person or department. The identified 
keywords are handled by a SQL Generator class. 
For the complex queries, we propose an algorithm 
that extracts the main keyword along with its 
characteristics to be used in further processing. 
        Section 4 discusses the  System Architecture 
and design decisions we made during design and 
implementation of our intelligent agent. Section 5 
describes how our NLIDB has been tested. It also 
shows and discusses the results we have 
achieved. 

4 System Architecture 
Our architecture has two major parts:  a  syntactic 
parser and  a semantic parser (Fig. 2). 
     These parsers help extract the key features that 
affect the whole process of transforming the natural 
queries into its equivalent SQL statements. We also 
show an algorithm to handle a higher level of 
semantic complexity for Natural Language queries. 
 
4.1 Syntactic Analysis 
The Syntactic model in general presents linguistic 
information based on tokenizers, morph analyzers, 
part-of-speech tagging (POS). There are eight parts 
of speech in the English grammar: verbs, nouns, 
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pronouns, adjectives, adverbs, prepositions, 
conjunctions and interjections [6]. 
       Stanford Log-linear Part-of-Speech Tagger [7], 
which was used in this work, is a software that reads 
an input (text)  and  assigns  part  of  speech (lexical  

 
                              Fig. 2: System Architecture  
 
 
category) to each word. It was presented in 2003 by 
members of the computer science department in 
Stanford University. The last release was in October 
2014. 
     If we send the following sentence: “What is the 
salary of Ahmad?” to the POS tagger, we get the 
response in Figure 3: “What_WP is_VBZ the_DT 
salary_NN of_IN Ahmad_NNP ?_. “ with the tags 
WP (Wh-pronoun), VBZ (Verb, 3rd person singular 
present), DT (Determiner), NN (Noun, singular or 

plural), IN (Preposition or subordinating 
conjunction) and NNP (Verb, non-3rd person 
singular present) assigned to the query words. 
 

      The syntactic analyzer tags the tokens of the 
sentence that are returned from the Token Analyzer. 
       
  
Figure 3: Part of speech tagging for the sentence: 

“What is the salary of Ahmad?” 
 
 
 
The main reason we used the part-of-speech tagger 
is to identify the parts that can be identified as our 
keyword from the query. These keywords are going 
to be passed to the next level    of    processing 
which is concerned with its semantic side. 
     We notice that the main words (nodes) of the 
queries are: Nouns, Adjectives and Numbers. Other 
words were discarded as they do not affect the 
conversion process. 
 
4.2 Semantic Analysis 
The POS is not enough by itself to convert the 
Natural Language query into SQL, so we need to 
add  
more information that we can use to understand the 
query. For this, we have used Stanford Named 
Entity Recognizer (NER) in order to assign the 
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keywords we already extracted from the query to the 
pre-defined category it belongs to. 
         So, along with the POS tagger we used 
Stanford NER to add some meaning to the category 
or entity the keyword belongs to. Hence, the names 
that would appear in the query would be recognized 
as PERSON which according to our database means 
that the person is an employee. For our department 
names we had to train our own named entity 
recognition model to recognize the departments as 
Organizations. 
       For example, if we send the sentence “What is 
the salary of Ahmad who works in Programming 
Department?” to be analyzed by the named entity 
recognizer, we get the output as shown in figure 4. 
The employee name “Ahmad” has been recognized 
as Person. Then our module understands that this 
Person is an employee according to our database 
schema. This understanding gives us the ability to 
construct the SQL statement.  
      Figure 5 illustrates the process of understanding 
the syntax of the query by using Stanford POS & 
NER. 
        The class QueryDefiner does the first step in 
constructing the SQL statement. It determines the 
SQL statement type by defining a list of synonym 
we expect the user to use of each type: SELECT, 
DELETE, INSERT. Like: ‘give me’, ‘show me’ and 
‘what’ for SELECT. 
       The second and third steps are to extract the 
keywords. After discarding any tokens that do not 
affect the transformation process to SQL statement 
the token is added to the proper clause of the SQL 
statement according to a set of rules that have been 
defined to process the structure of the query. 

Figure 4: NER output for the sentence “What is the  
salary of Ahmad who works in Programming 
Department?” 
 

4.2.1 Semantic Role Labeling 
There were some situations where the Stanford POS 
and NER failed to understand the user’s query and 
thus was not able to convert it to SQL. 
      So we needed a Semantic role labeler which 
presents the semantic relation between the 
predicates (verbs) and arguments with labeled arcs. 

In semantic parsing we perform a dependency 
parsing to derive a syntactic dependency structure 
where every token (word) except the root  have a 
link (dependency) to a head token. Then we apply a 
Semantic role labeling where each predicate has a 
semantic information. 

__________________________________________ 
1. Determine the desired action from the input 

query (INSERT, DELETE or SELECT).  
2. Remove any filler words to extract the keywords. 
3. For each keyword: 
 Check whether it is: Column\Table Name or 
a synonym of one of them. If not: 
 Check whether it is: Operator, Person, 
Organization or a WHERE Clause condition.  
4. Whether it was A or B. Add the keyword after 
processing it to the proper clause of the SQL 
statement. 
5. Re-arrange the SQL string if necessary. 
_________________________________________ 
Figure 5: The algorithm used to understand the 
syntax and semantic of the query by using Stanford 
POS & NER. 

 
       We used ClearNLP [8]. which is an open source 
project developed at Emory University and has been 
used in research like in [9]. 
       In general, argument goes through two tasks, 
argument identification which is the task of finding 
the argument of each predicate and argument 
classification where each argument is assigned with 
a semantic role with respect to the predicate [8].  
       Figure 6 shows the flow of our framework. It 
starts with the Syntactic analysis performed by 
Stanford POS tagger. Then, the keyword extractor 
use the information from the POS tagger to extract 
the keywords that are used by the NER. The Named 
entity Recognizer defines the related domain 
concepts like person or department.  
        In complex queries we go through a 
dependency semantic parsing. Then we move to the 
nodes mapping which maps each node in the 
keywords into the corresponding SQL statement 
component. The SQL statement is executed against 
our relational database. The retrieved response is 
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then handled by the answer generation class to form 
the answer to be presented to the user. 

 
5 Results 
We have thoroughly tested our system and we used 
an input data that consists of hand crafted questions 
specifically designed to verify that the Intelligent 
Agent, IA can transform all the covered construction 
rules (that have been defined) into correct SQL 
statement. Also, wav files recorded from different 

users have been used to test speech recognition tool. 
 

                     Figure 6: Flow of the framework 
 

 
We used Sphinx4 [10] as the speech recognition 

tool, MySQL as the     RDBMS, the Stanford 
Natural Language Part-of-Speech Tagger [7] as the 
syntax parser, the Stanford Named Entity 
Recognizer [11] as the semantic parser and  
ClearNLP [12] for parsing complex queries. We 
have implemented the IA (to implement our 
algorithm and integrate all tools mentioned 
above) in Java. 
      The goal of this work is to ease the process of 
querying relational database for non-technical users. 
As such, we used the measurement in [13] where 

there are two aspects to be evaluated (with some 
modification to suite our framework): 
• The quality of the returned SQL statement from 

written Natural Language queries (effectiveness 
and correctness). 

• Whether our module was easy to be used by non-
technical users with spoken queries (usability). 

5.1 Effectiveness 

 
 
 

 
 
 
 
The effectiveness of our system is evaluated as the 
percentage of the queries that were successfully 
translated into SQL statements by our IA. 
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      The test suite contained 70 questions about the 
database. It   has been   evaluated by   comparing the  
correct SQL statement that corresponds to the user 
query with the SQL statement we got from our IA. 
The percentage of the success of our IA to transform 
the queries in the test suite was 81.43 % (Figure 7). 
Figure 7: The results of the Effectiveness measure 
of the INLIDB. 

 
 

5.2 Usability 
The usability in our test is measured by  

(a) How easy it is to say (or type) the query 
naturally and 

(b) The simplicity and accuracy of the results 
obtained from IA. 

Users were well satisfied with the results for all 
the correctly generated SQL statements. They have 
used 20 different queries using their natural 
language.  When they used spoken sentences (not 
typed), the accuracy of correctly generated SQL 
statements suffered to some extent due to the ASR 
recognition accuracy which was about 80%. This, 
however, can be improved by using more accurate 
ASR tool and improved semantics in NLP. 
Improved semantics can also  improve the overall 
accuracy shown in Figure 7, especially for complex 
sentences. 

 
6 Conclusion and Future Work 
Adding the Natural Language processing 
capabilities to a database by using an Intelligent 
Agent (INLIDB), enhances the ease of use by the 
users with no programming background to query the 
database with their native language. 
      One challenge in the NLIDB evolution is not 
having good ability to overcome the Natural 
Language problems like the semantics, ambiguity, 
and universe of discourse which make the 
transformation process difficult. 
       The architecture of our system has five parts - 
first, the syntactic parser where we have used 
Stanford Part-of-Speech tagger to understand the 
syntactical structure of the input query; second, the 
semantic parser where we have used Stanford 
Named Entity Recognition to recognize the 
semantics of the entities; third, improving the 
semantics by using Semantic Role Labeling for 
which we have used ClearNLP; fourth, the SQL 
statement generation class, and fifth, generation of a 
nice presentable result that a nontechnical person 
can easily understand. 

       One of the characteristics that distinguishes our 
research is the focus on extracting the keywords to 
be processed by the syntactic and semantic parsers. 
The rules to handle the structure of the query were 
also designed to use what have been understood by 
the parsers in the transformation process. 
       In order to manage complex queries we 
proposed an algorithm to extract the main keyword 
and its’ characteristics to be used in further 
processing. 
 
      The overall result of our test suite was 81.43% 
and the result of our proposed algorithm to process 
complex queries was 80%. These are   moderate but 
encouraging results given the complexity of 
developing them from scratch and under the hard 
time constraints. According to the user satisfactory 
survey, we concluded that the users were pleased 
with the system performance and some degree of 
syntactic and semantic processing are needed to 
improve the results. The intelligent agent still needs 
improvements in several areas, especially for 
complex sentences. Key future works are: 

(a) Further improving the rules and  

(b) Adding more advanced semantics, especially 
using SEBLA (Semantic Engine using Brain-Like 
Approach) [15]. 
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