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Abstract: In this paper, a two-degree friction-induced oscillator system is presented for passable motions and stick
motions. The system consists of two masses moving on a speed-varying traveling belt, which are connected with
three linear springs, three dampers and exerted by two periodic excitations. The oscillator system experiences
friction between the masses and the traveling belt, and the friction will cause the stick and nonstick motions
between the masses and the belt. The dynamical behaviors of passable motions and stick motions of such oscillator
system are investigated by using the flow switchability theory of discontinuous dynamical systems. The onset and
vanishing conditions for the stick motions between the oscillator and belt are given, and the analytical conditions for
the passable motions will also be obtained, from which it can been seen that such oscillator has more complicated
and rich dynamical behaviors. There are more theories about such oscillator to be discussed in future.
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1 Introduction

In mechanical engineering, the friction contact be-
tween two surfaces of two bodies is an importan-
t connection and friction phenomenon widely exist-
s. In recent years, much research effort in science
and engineering has focussed on nonsmooth dynam-
ical systems[1-12]. This problem can go back to the
30’s of last century. In 1930, Den Hartog [1] investi-
gated the non-stick periodic motion of the forced lin-
ear oscillator with Coulomb and viscous damping. In
1960, Levitan [2] proved the existence of periodic mo-
tions in a friction oscillator with the periodically driv-
en base. In 1964, Filippov [3] investigated the mo-
tion in the Coulomb friction oscillator and presented
differential equation theory with discontinuous right-
hand sides. The investigations of such discontinuous
differential equations were summarized in Filippov
[4]. However, the Filippov’s theory mainly focused
on the existence and uniqueness of the solutions for
non-smooth dynamical systems. Such a differential
equation theory with discontinuity is difficult to ap-
ply to practical problems. In 2005-2012, Luo [5-11]

developed a general theory to define real, imaginary,
sink and source flows and to handle the local singular-
ity and flow swtichability in discontinuous dynamical
systems. Luo and Gegg [9] presented the force criteria
for the stick and nonstick motions for 1-DOF(Degree
of Freedom) oscillator moving on the belt with dry
friction. Based on this improved model, which con-
sists of two masses moving on the speed-varying trav-
eling belt and the two masses are connected with three
linear springs and three dampers and are exerted by
two periodic excitations, nonlinear dynamics mecha-
nism of such a 2-DOF oscillator system will be inves-
tigated.

In this paper, the main goal is to study the ana-
lytical prediction conditions for motion switching and
stick motions on the corresponding boundaries in a
friction-induced oscillator with 2-DOF on a speed-
varying belt by using the theory of discontinuous dy-
namical systems. Based on the discontinuity, domain
partitions and boundaries will be defined. The analyt-
ical conditions for the onset and vanishing of the stick
motions will be given, and the analytical conditions
for passable motions will also be obtained.
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2 Preliminaries
For convenience, we give the following concepts(see
[10]-[11]). Assume that Ω is a bounded simply con-
nected domain in Rn and its boundary ∂Ω ⊂ Rn−1 is
a smooth surface.

Consider a dynamic system consisting of N sub-
dynamic systems in a universal domain Ω ⊂ Rn.
The universal domain is divided into N accessible
sub-domains Ωα(α ∈ I) and the inaccessible domain
Ω0. The union of all the accessible sub-domains is
∪α∈IΩα and Ω = ∪α∈IΩα

⋃
Ω0 is the universal do-

main. On the αth open sub-domain Ωα, there is aCrα-
continuous system (rα ≥ 1) in form of

ẋ(α) ≡ F(α)(x(α), t,pα) ∈ Rn, (1)

x(α) = (x
(α)
1 , x

(α)
2 , ..., x(α)

n )T ∈ Ωα. (2)

The time is t and ẋ = dx/dt. In an accessible sub-
domain Ωα, the vector field F(α)(x(α), t,pα) with pa-
rameter vector pα = (p

(1)
α , p

(2)
α , ..., p

(l)
α )T ∈ Rl is

Crα-continuous (rα ≥ 1) in x ∈ Ωα and for al-
l time t, and the continuous flow in Eqs. (1) and
(2) x(α)(t) = Φ(α)(x(α)(t0), t,pα) with x(α)(t0) =

Φ(α)(x(α)(t0), t0,pα) isCrα+1 continuous for time t.
The flow on the boundary ∂Ωαβ = Ωα

⋂
Ωβ can

be determined by

ẋ(0) ≡ F(0)(x(0), t, λ) with ϕij(x
(0), t, λ) = 0, (3)

where x(0) = (x
(0)
1 , x

(0)
2 , ..., x

(0)
n )T. With specific ini-

tial conditions, one always obtains different flows on
ϕij(x

(0), t, λ) = ϕij(x
(0)
0 , t0, λ).

Consider a dynamic system in Eqs. (1) and
(2) in domain Ωα(α ∈ {i, j}) which has a flow
x(α) = Φ(α)(t0,x

(α)
0 ,pα, t) with an initial condition

(t0,x
(α)
0 ), and on the boundary ∂Ωij , there is an e-

nough smooth flow x(0) = Φ(t0, x
(0)
0 , λ, t) with an

initial condition (t0,x
(0)
0 ). For an arbitrarily smal-

l ε > 0, there are two time intervals [t − ε, t) or
(t, t + ε] for flow x(α)(α ∈ {i, j}) and the flow x

(α)
t

approaches the separation boundary at time tm(.i.e.,
x

(α)
tm± = xm = x

(0)
tm ), where x

(α)
tm± = x(α)(tm±),

x
(0)
tm = x(0)(tm), and xm ∈ ∂Ωij).

The G-functions G(α)
∂Ωij

of the flow x
(α)
t to the

flow x
(0)
t on the boundary ∂Ωij are defined as

G
(α)
∂Ωij

(xm, tm±,pα, λ)

= nT
∂Ωij

(x(0), t, λ) · [F(α)(x(α), t,pα)

−F(0)(x(0), t, λ)]|
(x

(0)
m ,x

(α)
m±,tm±)

, (4)

where x
(0)
m = x(0)(tm), x

(α)
m± = x(α)(tm±), tm± ≡

tm±0 is to represent the quantity in the domain rather
than on the boundary and G(α)

∂Ωij
(xm, tm±,pα, λ) is a

time rate of the inner product of displacement differ-
ence and the normal direction n∂Ωij (x

(0), tm, λ).
The kth-order G-functions of the domain flow

x
(α)
t to the boundary flow x

(0)
t in the normal direction

of ∂Ωij are defined as

G
(k,α)
∂Ωij

(xm, tm±,pα, λ)

= Σk+1
s=1C

s
k+1D

k+1−s
0 nT

∂Ωij

·[Ds−1
α F(x(α), t,pα)

−Ds−1
0 F(0)(x(0), t, λ)]|

(x
(0)
m ,x

(α)
m±,tm±)

, (5)

where the total derivative operators are defined as

D0(.) ≡ ∂(.)

∂x(0)
ẋ(0) +

∂(.)

t
, (6)

Dα(.) ≡ ∂(.)

∂x(α)
ẋ(α) +

∂(.)

t
. (7)

For k = 0, we have

G
(k,α)
∂Ωij

(xm, tm±,pα, λ)

= G
(α)
∂Ωij

(xm, tm±,pα, λ). (8)

For a discontinuous dynamical system in Eqs. (1)
and (2), there is a point x(tm) ≡ xm ∈ ∂Ωij . For an
arbitrarily small ε > 0, there are two time intervals
[t − ε, t) and (t, t + ε]. Suppose x(i)(tm−) = xm =

x(j)(tm+), if

nT
∂Ωij

(x
(0)
m−ε) · [x

(0)
m−ε − x

(i)
m−ε] > 0,

nT
∂Ωij

(x
(0)
m+ε) · [x

(j)
m+ε − x

(0)
m+ε] > 0

 (9)

for n∂Ωij → Ωj , then a resultant flow of two flows
x(α)(t)(α ∈ {i, j}) is a semi-passable flow from do-
main Ωi to Ωj at point (xm, tm) to boundary ∂Ωij ,
where x

(0)
m±ε = x(0)(tm ± ε),x(α)

m±ε = x(α)(tm ± ε).
More detailed theory on the flow switchability

such as the definitions or theorems about various flow
passability in discontinuous dynamical systems can be
referred to [10]-[11].
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3 Physical Model
Consider a friction-induced oscillator with two-degree
of freedom on the speed-varying traveling belt, as
shown in Fig.1. The system consists of two masses
mα(α = 1, 2), which are connected with three lin-
ear springs of stiffness kα (α = 1, 2, 3), and three
dampers of coefficient rα (α = 1, 2, 3). Both of mass-
es move on the belt with varying speed V (t). Two
periodic excitations Aα + Bα cos Ωt (α = 1, 2) with
frequency Ω, amplitudes Bα (α = 1, 2) and constant
forces Aα (α = 1, 2) are exerted on the two masses,
respectively.

Fig. 1: Physical model

There exist friction forces between the two mass-
es and the belt, so the two masses can move or stay on
the surface of the belt. Let V (t) be the speed of the
belt and

V (t) = V0 cos(Ωt+ β) + V1, (10)

where Ω is the oscillation frequency of the traveling
belt, and V0 is the oscillation amplitude of the travel-
ing belt, and V1 is constant.

Further, the friction force shown in Fig. 2 is de-
scribed by

F
(α)
f (ẋα)



= µkF
(α)
N , ẋα > V (t);

∈ [−µkF
(α)
N , µkF

(α)
N ], ẋα = V (t);

= −µkF
(α)
N , ẋα < V (t),

(11)

where ẋα = dxα/dt, µk is the coefficient of friction
betweenmα and the belt, F (α)

N = mαg (α = 1, 2) and
g is the acceleration of gravity. The non-friction force
acting on the mass mα in the xα-direction is defined

Fig. 2: Force of friction

as

F (α)
s = Bα cos Ωt+Aα − rαẋα − r3(ẋα

−ẋβ)− kαxα − k3(xα − xβ), (12)

where α, β ∈ {1, 2} and α 6= β. From now on,
F

(α)
f = µk · F

(α)
N .

From the previous discussion, there are four cases
of motions:

Case I: nonstick motion (ẋα 6= V (t))(α = 1, 2).
When F (α)

s can overcome the static friction force
F

(α)
f (i.e. |F (α)

s | > |F (α)
f |, α = 1, 2) , the mass mα

has relative motion to the belt, i.e.

ẋα 6= V (t), (α = 1, 2). (13)

For the nonstick motion of the mass mα(α =
1, 2), the total force acting on the mass mα is

F (α) = F (α)
s − F (α)

f sgn(ẋα − V (t))

= Bα cos Ωt+Aα − rαẋα − r3(ẋα − ẋβ)

−kαxα − k3(xα − xβ)− F (α)
f sgn(ẋα − V (t)), (14)

and the equations of non-stick motion for the 2-DOF
dry friction induced oscillator are

mαẍα + rαẋα + r3(ẋα − ẋβ) + kαxα + k3(xα

−xβ) = Bα cos Ωt+Aα − F (α)
f sgn(ẋα − V (t)), (15)

where α, β ∈ {1, 2}, α 6= β.
Case II: single stick motion( ẋ1 = V (t), ẋ2 6=

V (t)).
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When F
(1)
s can’t overcome the static friction

force F (1)
f (i.e. |F (1)

s | ≤ |F (1)
f |), mass m1 don’t have

any relative motion to the belt, i.e.

ẋ1 = V (t), ẍ1 = V̇ (t) = −V0Ω sin(Ωt+ β), (16)

meanwhile F (2)
s can overcome the static friction force

F
(2)
f (i.e. | F (2)

s |>| F (2)
f |), the mass m2 has relative

motion to the belt, i.e.

ẋ2 6= V (t), (17)
m2ẍ2 + r2ẋ2 + r3(ẋ2 − ẋ1) + k2x2 + k3(x2

−x1) = B2 cos Ωt+A2 − F (2)
f sgn(ẋ2 − V (t)). (18)

Case III: single stick motion( ẋ2 = V (t), ẋ1 6=
V (t)).

When F
(2)
s can’t overcome the static friction

force F (2)
f (i.e.|F (2)

s | ≤ |F (2)
f |), mass m2 don’t have

any relative motion to the belt, i.e.

ẋ2 = V (t), ẍ2 = V̇ (t) = −V0Ω sin(Ωt+ β), (19)

meanwhile F (1)
s can overcome the static friction force

F
(1)
f (i.e.|F (1)

s | > |F (1)
f |), mass m1 has relative mo-

tion to the belt, i.e.

ẋ1 6= V (t), (20)
m1ẍ1 + r1ẋ1 + r3(ẋ1 − ẋ2) + k1x1 + k3(x1

−x2) = B1 cos Ωt+A1 − F (1)
f sgn(ẋ1 − V (t)). (21)

Case IV: double stick motions (ẋα = V (t))(α =
1, 2).

When F
(α)
s can’t overcome the static friction

force F (α)
f (i.e.|F (α)

s | ≤ |F (α)
f |), mass mα don’t have

any relative motion to the belt, i.e.

ẋα = V (t), ẍα = V̇ (t) = −V0Ω sin(Ωt+ β). (22)

Integrating Eq. (10) leads to the displacement of
the belt:

X(t) =
V0

Ω
[sin(Ωt+ β)− sin(Ωti + β)]

+V1(t− ti) +Xti (23)

where t > ti and Xti = X(ti).

4 Domains and boundaries
Due to frictions between the mass mα (α = 1, 2) and
the traveling belt, the motions become discontinuous
and more complicated. The phase space of the dis-
continuous dynamical system is divided into four 4-
dimensional domains.

The state variables and vector fields are intro-
duced by

x = (x1, ẋ1, x2, ẋ2)T = (x1, y1, x2, y2)T, (24)

F = (y1, F1, y2, F2)T. (25)

By the state variables, the domains are defined as

Ω1 = {(x1, y1, x2, y2) | y1 > V (t),

y2 > V (t)},
Ω2 = {(x1, y1, x2, y2) | y1 > V (t),

y2 < V (t)},
Ω3 = {(x1, y1, x2, y2) | y1 < V (t),

y2 < V (t)},
Ω4 = {(x1, y1, x2, y2) | y1 < V (t),

y2 > V (t)}



(26)

and the corresponding boundaries are defined as

∂Ω12 = ∂Ω21

= {(x1, y1, x2, y2) | ϕ12 = ϕ21

= y2 − V (t) = 0, y1 ≥ V (t)},
∂Ω23 = ∂Ω32

= {(x1, y1, x2, y2) | ϕ23 = ϕ32

= y1 − V (t) = 0, y2 ≤ V (t)},
∂Ω34 = ∂Ω43

= {(x1, y1, x2, y2) | ϕ34 = ϕ43

= y2 − V (t) = 0, y1 ≤ V (t)},
∂Ω14 = ∂Ω41

= {(x1, y1, x2, y2) | ϕ12 = ϕ21

= y1 − V (t) = 0, y2 ≥ V (t)}.



(27)

The phase plane of mα is shown in Fig. 3.
The 2-dimensional edges of the 3-dimensional

boundaries are defined by

∠Ωα1α2α3 = ∂Ωα1α2

⋂
∂Ωα2α3 =

3⋂
i=1

Ωαi (28)
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Fig. 3: Phase plane of mα

for (αi ∈ {1, 2, 3, 4}, i = 1, 2, 3;α1, α2, α3 is not e-
qual to each other without repeating) and the intersec-
tion of four 2-dimensional edges is

∠Ω1234 = ∩∠Ωα1α2α3

= {(x1, y1, x2, y2) |
ϕ12 = ϕ34 = y2 − V (t) = 0,

ϕ23 = ϕ14 = y1 − V (t) = 0}. (29)

From the above discussion, the motion equations of
the oscillator described in Section 3 in absolute coor-
dinates are

ẋ(α) = F(α)(x(α), t) in Ωα,

ẋ(α1α2) = F(α1α2)(x(α1α2), t) on ∂Ωα1α2 ,

ẋ(α1α2α3)

= F(α1α2α3)(x(α1α2α3), t) on ∂Ωα1α2α3

 (30)

and

x(α) = x(α1α2) = x(α1α2α3)

= (x1, y1, x2, y2)T,

F(α) = (y1, F
(α)
1 , y2, F

(α)
2 )T,

F(α1α2) = (y1, F
(α1α2)
1 , y2, F

(α1α2)
2 )T,

F(α1α2α3)

= (y1, F
(α1α2α3)
1 , y2, F

(α1α2α3)
2 )T,


(31)

where the forces of unit mass for the 2-DOF friction
induced oscillator in the domain Ωα (α ∈ {1, 2, 3, 4})

are

F
(1)
1 = F

(2)
1

= b1 cos Ωt+ a1 − c1y1 − p1(y1 − y2)

−d1x1 − q1(x1 − x2)− f1,

F
(3)
1 = F

(4)
1

= b1 cos Ωt+ a1 − c1y1 − p1(y1 − y2)

−d1x1 − q1(x1 − x2) + f1,

F
(1)
2 = F

(4)
2

= b2 cos Ωt+ a2 − c2y2 − p2(y2 − y1)

−d2x2 − q2(x2 − x1)− f2,

F
(2)
2 = F

(3)
2

= b2 cos Ωt+ a2 − c2y2 − p2(y2 − y1)

−d2x2 − q2(x2 − x1) + f2,



(32)

here

aα =
Aα
mα

, bα =
Bα
mα

, cα =
rα
mα

, dα =
kα
mα

,

pα =
r3

mα
, qα =

k3

mα
, fα =

F
(α)
f

mα
, α ∈ {1, 2},

and the forces of unit mass of the oscillator on the
boundary ∂Ωα1α2 are

F
(12)
1 ≡ b1 cos Ωt+ a1 − c1y1 − p1(y1 − y2)

−d1x1 − q1(x1 − x2)− f1,

F
(12)
2 = 0 for stick on ∂Ω12,

F
(12)
2 ∈ [F

(1)
2 , F

(2)
2 ] for nonstick on ∂Ω12;

 (33)

F
(23)
2 ≡ b2 cos Ωt+ a2 − c2y2 − p2(y2 − y1)

−d2x2 − q2(x2 − x1) + f2,

F
(23)
1 = 0 for stick on ∂Ω23,

F
(23)
1 ∈ [F

(2)
1 , F

(3)
1 ] for nonstick on ∂Ω23;

 (34)

F
(34)
1 ≡ b1 cos Ωt+ a1 − c1y1 − p1(y1 − y2)

−d1x1 − q1(x1 − x2) + f1,

F
(34)
2 = 0 for stick on ∂Ω34,

F
(34)
2 ∈ [F

(4)
2 , F

(3)
2 ] for nonstick on ∂Ω34;

 (35)

F
(14)
2 ≡ b2 cos Ωt+ a2 − c2y2 − p2(y2 − y1)

−d2x2 − q2(x2 − x1)− f2,

F
(14)
1 = 0 for stick on ∂Ω14,

F
(14)
1 ∈ [F

(1)
1 , F

(4)
1 ] for nonstick on ∂Ω14.

 (36)
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The forces of unit mass of the oscillator on
the boundary ∂Ωα1α2α3 for (αi ∈ {1, 2, 3, 4}, i =
1, 2, 3;α1, α2, α3 is not equal to each other without
repeating) are

F
(α1α2α3)
α ∈ (F

(α1α2)
α , F

(α2α3)
α ), α ∈ {1, 2}

for nonstick on ∂Ωα1α2α3 ;

F
(α1α2α3)
α = 0, α ∈ {1, 2}

for full stick on ∂Ωα1α2α3 .


For simplicity, the relative displacement, velocity

and acceleration between the massmα (α = 1, 2) and
the traveling belt are defined as

zα = xα −X(t),

vα = ẋα − V (t),

z̈α = ẍα − V̇ (t).

 (37)

The domains and boundaries in relative coordi-
nates are defined as

Ω1 = {(z1, v1, z2, v2) | v1 > 0, v2 > 0},
Ω2 = {(z1, v1, z2, v2) | v1 > 0, v2 < 0},
Ω3 = {(z1, v1, z2, v2) | v1 < 0, v2 < 0},
Ω4 = {(z1, v1, z2, v2) | v1 < 0, v2 > 0},

 (38)

∂Ω12 = ∂Ω21

= {(z1, v1, z2, v2) | ϕ12 = ϕ21

= v2 = 0, v1 ≥ 0},
∂Ω23 = ∂Ω32

= {(z1, v1, z2, v2) | ϕ23 = ϕ32

= v1 = 0, v2 ≤ 0},
∂Ω34 = ∂Ω43

= {(z1, v1, z2, v2) | ϕ34 = ϕ43

= v2 = 0, v1 ≤ 0},
∂Ω14 = ∂Ω41

= {(z1, v1, z2, v2) | ϕ14 = ϕ41

= v1 = 0, v2 ≥ 0},



(39)

∠Ωα1α2α3 = ∂Ωα1α2 ∩ ∂Ωα2α3 = ∩3
i=1Ωαi (40)

for (αi ∈ {1, 2, 3, 4}, i = 1, 2, 3;α1, α2, α3 is not e-
qual to each other without repeating) and the intersec-
tion of four 2-dimensional edges is

∠Ω1234 = ∩∠Ωα1α2α3 = {(z1, v1, z2, v2) | ϕ12

= ϕ34 = v2 = 0, ϕ23 = ϕ14 = v1 = 0}. (41)

The domain partitions and boundaries in relative
coordinates are shown in Fig. 4.

Fig. 4: Relative domains and boundaries

From the foregoing equations, the motion equa-
tions in relative coordinates are as follows

ż(α) = g(α)(z(α),x(α), t) in Ωα,

ż(α1α2)

= g(α1α2)(z(α1α2),x(α1α2), t) on ∂Ωα1α2 ,

ż(α1α2α3)

= g(α1α2α3)(z(α1α2α3),x(α1α2α3), t)

on ∂Ωα1α2α3 ,


(42)

where

z(α) = z(α1α2) = z(α1α2α3)

= (z1, ż1, z2, ż2)T

= (z1, v1, z2, v2)T,

g(α) = (ż1, g
(α)
1 , ż2, g

(α)
2 )T

= (v1, g
(α)
1 , v2, g

(α)
2 )T,

g(α1α2) = (ż1, g
(α1α2)
1 , ż2, g

(α1α2)
2 )T

= (v1, g
(α1α2)
1 , v2, g

(α1α2)
2 )T,

g(α1α2α3)

= (ż1, g
(α1α2α3)
1 , ż2, g

(α1α2α3)
2 )T

= (v1, g
(α1α2α3)
1 , v2, g

(α1α2α3)
2 )T.



(43)

The forces of unit mass for the 2-DOF friction
induced oscillator in the domain Ωα(α ∈ {1, 2, 3, 4})
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in relative coordinates are

g
(1)
1 = g

(2)
1

= b1 cos Ωt+ a1 − c1v1 − p1(v1 − v2)

−d1z1 − q1(z1 − z2)− c1V (t)

−d1X(t)− f1 − V̇ (t),

g
(3)
1 = g

(4)
1

= b1 cos Ωt+ a1 − c1v1 − p1(v1 − v2)

−d1z1 − q1(z1 − z2)− c1V (t)

−d1X(t) + f1 − V̇ (t);

g
(1)
2 = g

(4)
2

= b2 cos Ωt+ a2 − c2v2 − p2(v2 − v1)

−d2z2 − q2(z2 − z1)− c2V (t)

−d2X(t)− f2 − V̇ (t),

g
(2)
2 = g

(3)
2

= b2 cos Ωt+ a2 − c2v2 − p2(v2 − v1)

−d2z2 − q2(z2 − z1)− c2V (t)

−d2X(t) + f2 − V̇ (t).



(44)

The forces of unit mass of the friction induced
oscillator on the boundary ∂Ωα1α2 in relative coordi-
nates are

g
(12)
1 ≡ b1 cos Ωt+ a1 − c1v1 − p1(v1 − v2)

−d1z1 − q1(z1 − z2)− c1V (t)

−d1X(t)− f1 − V̇ (t),

g
(12)
2 = 0 for stick on ∂Ω12,

g
(12)
2 ∈ [g

(1)
2 , g

(2)
2 ] for nonstick on ∂Ω12;


(45)

g
(23)
2 ≡ b2 cos Ωt+ a2 − c2v2 − p2(v2 − v1)

−d2z2 − q2(z2 − z1)− c2V (t)

−d2X(t) + f2 − V̇ (t),

g
(23)
1 = 0 for stick on ∂Ω23,

g
(23)
1 ∈ [g

(2)
1 , g

(3)
1 ] for nonstick on ∂Ω23;


(46)

g
(34)
1 ≡ b1 cos Ωt+ a1 − c1v1 − p1(v1 − v2)

−d1z1 − q1(z1 − z2)− c1V (t)

−d1X(t) + f1 − V̇ (t),

g
(34)
2 = 0 for stick on ∂Ω34,

g
(34)
2 ∈ [g

(4)
2 , g

(3)
2 ] for nonstick on ∂Ω34;


(47)

g
(14)
2 ≡ b2 cos Ωt+ a2 − c2v2 − p2(v2 − v1)

−d2z2 − q2(z2 − z1)− c2V (t)

−d2X(t)− f2 − V̇ (t),

g
(14)
1 = 0 for stick on ∂Ω14,

g
(14)
1 ∈ [g

(1)
1 , g

(4)
1 ] for nonstick on ∂Ω14.


(48)

The forces of unit mass of the oscillator on
the boundary ∂Ωα1α2α3 for (αi ∈ {1, 2, 3, 4}, i =
1, 2, 3;α1, α2, α3 is not equal to each other without
repeating) are

g
(α1α2α3)
α ∈ (g

(α1α2)
α , g

(α2α3)
α ), α ∈ {1, 2}

for nonstick on ∂Ωα1α2α3 ;

g
(α1α2α3)
α = 0, α ∈ {1, 2}

for full stick on ∂Ωα1α2α3 .


5 Analytical conditions
Using the absolute coordinates, it is very difficult to
develop the analytical conditions for the complex mo-
tions of the oscillator described in Section 3 because
the boundaries are dependent on time, thus the relative
coordinates are needed herein for simplicity.

From Eqs. (4) and (5) in Section 2, we have

G(0,α1)(z(α),x(α), tm±)

= nT
∂Ωα1α2

· g(α1)(z(α),x(α), tm±), (49)

G(1,α1)(z(α),x(α), tm±)

= 2DnT
∂Ωα1α2

· [g(α1)(tm±)− g(α1α2)(tm)]

+nT
∂Ωα1α2

· [Dg(α1)(tm±)−Dg(α1α2)(tm)]. (50)

In relative coordinates, the boundary ∂Ωα1α2 is
independent on t, so DnT

∂Ωα1α2
= 0. Because of

nT
∂Ωα1α2

· g(α1α2) = 0,

therefore

DnT
∂Ωα1α2

· g(α1α2) + nT
∂Ωα1α2

·Dg(α1α2) = 0,

thus
nT
∂Ωα1α2

·Dg(α1α2) = 0.
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Eq. (50) is simplified as

G(1,α1)(zα,xα, tm±)

= nT
∂Ωα1α2

·Dg(α1)(tm±). (51)

The tm represents the time for the motion on the ve-
locity boundary and tm± = tm ± 0 reflects the re-
sponses in the domain rather than on the boundary.

From the previous descriptions for the system, the
normal vector of the boundary ∂Ωα1α2 in the relative
coordinates is

n∂Ωα1α2
= (

∂ϕα1α2

∂z1
,
∂ϕα1α2

∂v1
,
∂ϕα1α2

∂z2
,
∂ϕα1α2

∂v2
)T.

(52)
With Eqs. (39) and (52), we have

n∂Ω23 = n∂Ω14 = (0, 1, 0, 0)T,

n∂Ω12 = n∂Ω34 = (0, 0, 0, 1)T.

}
(53)

Theorem 1 For the 2-DOF friction induced oscil-
lator described in Section 3, the non-stick motion
(or called passable motion to boundary) on xm ∈
∂Ωα1α2 at time tm appears iff

(a) α1 = 2, α2 = 1 :

g
(2)
2 (tm−) > 0,

g
(1)
2 (tm+) > 0

}
from Ω2 → Ω1; (54)

(b) α1 = 1, α2 = 2 :

g
(1)
2 (tm−) < 0,

g
(2)
2 (tm+) < 0

}
from Ω1 → Ω2; (55)

(c) α1 = 3, α2 = 4 :

g
(3)
2 (tm−) > 0,

g
(4)
2 (tm+) > 0

}
from Ω3 → Ω4; (56)

(d) α1 = 4, α2 = 3 :

g
(4)
2 (tm−) < 0,

g
(3)
2 (tm+) < 0

}
from Ω4 → Ω3; (57)

(e) α1 = 2, α2 = 3 :

g
(2)
1 (tm−) < 0,

g
(3)
1 (tm+) < 0

}
from Ω2 → Ω3; (58)

(f) α1 = 3, α2 = 2 :

g
(3)
1 (tm−) > 0,

g
(2)
1 (tm+) > 0

}
from Ω3 → Ω2; (59)

(g) α1 = 4, α2 = 1 :

g
(4)
1 (tm−) > 0,

g
(1)
1 (tm+) > 0

}
from Ω4 → Ω1; (60)

(h) α1 = 1, α2 = 4 :

g
(1)
1 (tm−) < 0,

g
(4)
1 (tm+) < 0

}
from Ω1 → Ω4. (61)

Proof: By Theorem 2.1 in [10], the passable motion
for a flow from domain Ωα1 to Ωα2 on the boundary
∂Ωα1α2 at time tm appears iff for n∂Ωα1α2

→ Ωα1

G(0,α1)(tm−)

= nT
∂Ωα1α2

· g(α1)(tm−)

< 0,

G(0,α2)(tm+)

= nT
∂Ωα1α2

· g(α2)(tm+)

< 0


(62)

From (53) and g(α) = (v1, g
(α)
1 , v2, g

(α)
2 ), we

have

nT
∂Ω12
· g(α)(tm±) = g

(α)
2 (tm±) (α = 1, 2),

nT
∂Ω34
· g(α)(tm±) = g

(α)
2 (tm±) (α = 3, 4),

nT
∂Ω23
· g(α)(tm±) = g

(α)
1 (tm±) (α = 2, 3),

nT
∂Ω14
· g(α)(tm±) = g

(α)
1 (tm±) (α = 1, 4).

(63)

Substitute the first formula of (63) into (62), we
have

G(0,1)(tm−)

= nT
∂Ω12
· g(1)(tm−)

= g
(1)
2 (tm−) < 0,

G(0,2)(tm+)

= nT
∂Ω12
· g(2)(tm+)

= g
(2)
2 (tm+) < 0


from Ω1 → Ω2, (64)
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G(0,2)(tm−)

= nT
∂Ω12
· g(2)(tm−)

= g
(2)
2 (tm−) > 0,

G(0,1)(tm+)

= nT
∂Ω12
· g(1)(tm+)

= g
(1)
2 (tm+) > 0


from Ω2 → Ω1. (65)

So, (a) and (b) hold. Similarly, (c) − (h) can be
proved. 2

By Theorem 2.4, Theorem 3.15 in [10] and The-
orem 2.15 in [11], we can easily obtain the following
theorems.

Theorem 2 For the 2-DOF friction induced oscilla-
tor described in Section 3, the stick motion in physics
(or called the sliding motion in mathematics) to the
boundary ∂Ωα1α2 is guaranteed iff

g
(2)
2 (tm−) > 0, g

(1)
2 (tm−) < 0 on ∂Ω12;

g
(3)
2 (tm−) > 0, g

(4)
2 (tm−) < 0 on ∂Ω34;

g
(4)
1 (tm−) > 0, g

(1)
1 (tm−) < 0 on ∂Ω14;

g
(3)
1 (tm−) > 0, g

(2)
1 (tm−) < 0 on ∂Ω23.

(66)

Theorem 3 For the 2-DOF friction induced oscilla-
tor described in Section 3, the analytical conditions
for vanishing of the stick motion from ∂Ωα1α2 and en-
tering domain Ωα1 are

g
(2)
2 (tm−) > 0,

g
(1)
2 (tm±) = 0,

Dg
(1)
2 (tm±) > 0

 from ∂Ω12 → Ω1, (67)

g
(2)
2 (tm±) = 0,

g
(1)
2 (tm−) < 0,

Dg
(2)
2 (tm±) < 0

 from ∂Ω12 → Ω2; (68)

g
(3)
2 (tm−) > 0,

g
(4)
2 (tm±) = 0,

Dg
(4)
2 (tm±) > 0

 from ∂Ω34 → Ω4, (69)

g
(3)
2 (tm±) = 0,

g
(4)
2 (tm−) < 0,

Dg
(3)
2 (tm±) < 0

 from ∂Ω34 → Ω3; (70)

g
(4)
1 (tm−) > 0,

g
(1)
1 (tm±) = 0,

Dg
(1)
1 (tm±) > 0

 from ∂Ω14 → Ω1, (71)

g
(4)
1 (tm±) = 0,

g
(1)
1 (tm−) < 0,

Dg
(4)
1 (tm±) < 0

 from ∂Ω14 → Ω4; (72)

g
(3)
1 (tm−) > 0,

g
(2)
1 (tm±) = 0,

Dg
(2)
1 (tm±) > 0

 from ∂Ω23 → Ω2, (73)

g
(3)
1 (tm±) = 0,

g
(2)
1 (tm−) < 0,

Dg
(3)
1 (tm±) < 0

 from ∂Ω23 → Ω3. (74)

Theorem 4 For the 2-DOF friction induced oscilla-
tor described in Section 3, the stick motion on the
boundary ∂Ωα1α2 appears iff

g
(2)
2 (tm−) > 0,

g
(1)
2 (tm±) = 0,

Dg
(1)
2 (tm±) < 0

 from Ω1 to ∂Ω12, (75)

g
(2)
2 (tm±) = 0,

g
(1)
2 (tm−) < 0,

Dg
(2)
2 (tm±) > 0

 from Ω2 to ∂Ω12; (76)

g
(3)
2 (tm−) > 0,

g
(4)
2 (tm±) = 0,

Dg
(4)
2 (tm±) < 0

 from Ω4 to ∂Ω34, (77)

g
(3)
2 (tm±) = 0,

g
(4)
2 (tm−) < 0,

Dg
(3)
2 (tm±) > 0

 from Ω3 to ∂Ω34; (78)

g
(4)
1 (tm−) > 0,

g
(1)
1 (tm±) = 0

Dg
(1)
1 (tm±) < 0

 from Ω1 to ∂Ω14, (79)
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g
(4)
1 (tm±) = 0,

g
(1)
1 (tm−) < 0,

Dg
(4)
1 (tm±) > 0

 from Ω4 to ∂Ω14; (80)

g
(3)
1 (tm−) > 0,

g
(2)
1 (tm±) = 0,

Dg
(2)
1 (tm±) < 0

 from Ω2 to ∂Ω23, (81)

g
(3)
1 (tm±) = 0,

g
(2)
1 (tm−) < 0,

Dg
(3)
1 (tm±) > 0

 from Ω3 to ∂Ω23. (82)

6 Conclusion
In this paper, passable motions and stick motions of
2-DOF friction-induced oscillator with two harmon-
ically external excitations on a speed-varying trav-
eling belt were investigated by using the theory of
flow switchability for discontinuous dynamical sys-
tems. Different domains and boundaries for such sys-
tem in the absolute space and relative space were de-
fined according to the friction discontinuity, respec-
tively. The analytical conditions for the passable mo-
tions and the stick motions of such 2-DOF friction-
induced oscillator were presented, from which it can
been seen that such oscillator has more complicated
and rich dynamical behaviors. There are more theo-
ries about such oscillator to be discussed in future.
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