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TURKEY (TÜRKİYE)
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Abstract: In this paper, a decomposition method Tridiagonal Kernel Enhanced Multivariance Products Repre-
sentation (TKEMPR) is presented with numerical implementations. These method is based on bivariate square
integrable functions over the rectangular hyperprism. This research is also can be considered as the extension to
our works whose papers were given in the very recent international conferences. The contribution of this new
paper is to apply the method not only to the functions that are as the product of two given univariate functions,
but also to any bivariate analytical functions. A number of numerical examples are used to show the efficiency
of the method given in this paper.
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1 Introduction
Tridiagonal Kernel Enhanced Multivariance Products
Representation (TKEMPR) is based on the Enhanced
Multivariance Products Representation method. For
this reason, we will give the basic information of these
method here.

EMPR is an expansion for a given multivariate
function f (x1, ..., xN ) as

f (x1, ..., xN ) = f0

N∏
i=1

si (xi) +
N∑
j=1

fj (xj)
N∏
i=1
i6=j

si (xi)

+
N∑

j1,j2=1
j1<j2

fj1,j2 (xj1 , xj2)
N∏
i=1

i6=j1,j2

si (xi)

+
N∑

j1,j2,j3=1
j1<j2<j3

fj1,j2,j3 (xj1 , xj2 , xj3)
N∏
i=1

i6=j1,j2,j3

si (xi)

+ · · ·+ f12...N (x1, ..., xN ) (1)

where N is the number of the independent variables.
Subindexed fs are called constant, univariate, bivari-
ate EMPR components and so on respectively [1–4].
sis are univariate support functions.xjs, are indepen-
dent variables in some interval on the real line such
that

xi ∈ [ ai, bi ] , i = 1, ..., N (2)

The main purpose of this method is to determine the
general structure of the EMPR components. In this
work, we focused on bivariate functions on the unit
interval [ 0, 1 ]. Therefore, we can rewrite the EMPR
expansion for a given bivariate function f (x, y) as

f (x, y) = f0u(x)v(y) + f1(x)v(y) + f2(y)u(x)

+f1,2(x, y) (3)

where u and vs are the support functions. The weight
functions and support functions, used in this method,
are defined as the following form

W1 (x) ≡ 1,

∫ 1

0
dxu (x)2 = 1, (4)

W2 (y) ≡ 1,

∫ 1

0
dyv (y)2 = 1 (5)

For the determination of the components the van-
ishing conditions should be imposed as∫ 1

0
dxf1(x)u(x) = 0,

∫ 1

0
dyf2(y)v(y) = 0 (6)

∫ 1

0
dxf1,2(x, y)u(x) = 0,

∫ 1

0
dyf1,2(x, y)v(y) = 0 (7)
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These equations allow us to get the EMPR compo-
nents uniquely as the following form

f0 =

∫ 1

0
dx

∫ 1

0
dyf (x, y)u (x) v (y) (8)

f1 (x) =

∫ 1

0
dyf (x, y) v (y)− f0u (x) (9)

f2 (y) =

∫ 1

0
dxf (x, y)u (x)− f0v (y) (10)

f1,2 (x, y) = f (x, y)− f0u (x) v (y)
− f1 (x) v (y)− f2 (y)u (x) (11)

2 TKEMPR Decomposition Method
In the EMPR expansion, there are 2N componenets
for a givenN−variate function. Computation of them
are very expensive task. This issue urges us to truncate
EMPR expansion to low the multivairance and con-
vert the expansion to an approximation method. But,
in this work , we are going to choose another way to
low the multivariane by vanishing the bivariate EMPR
component, shown at the right side of the expansion
given in (3).

Let us begin by briefly analysing TKEMPR
method when applied to any bivariate square inte-
grable functions on the interval [ 0, 1 ] [5–28]. For this
reason, we need to start with constructing a recursion
formula by using EMPR method.

The EMPR expansion for the target function
f(x, y) can be rewritten as the following form

f (0)(x, y) = α1u1(x)v1(y) + β1u2(x)v1(y)

+γ1u1(x)v2(y) + f (1)(x, y) (12)

such that
f (0)(x, y) = f(x, y) (13)

α1 = f0, β1 = ‖f1‖x γ1 = ‖f2‖y (14)

u1(x) = u(x), v1(y) = v(y) (15)

u2(x) =
f1(x)

‖f1‖x
, v2(y) =

f2(y)

‖f2‖y
(16)

The norm mentioned here is explicitly given below

‖f1‖x ≡
(∫ 1

0
dxf1(x)

2
)1/2

‖f2‖y ≡
(∫ 1

0
dyf2(y)

2
)1/2

(17)

At the begining, there are only two u1(x) and v1(y)
initial support functions. After using recursion, we
obtain another generated two x andy dependent u2(x)
and v2(y) support functions. The left generated sup-
port functions, u1(x) and u2(x) are mutually orthogo-
nal and have unit norms. Similary, the right generated
support functions, v1(y) and v2(y) are also mutually
orthogonal and have unit norms.

Now we can consider the following recursion
which matches (12) for the j step,

f (j)(x, y) = αj+1uj+1(x)vj+1(y)

+βj+1uj+2(x)vj+1(y)

+γj+1uj+1(x)vj+2(y)

+f (j+1)(x, y), j = 0, 1, ... (18)

where
f (j)(x, y) = f

(j)
1,2 (x, y), (19)

αj = f
(j)
0 , (20)

and

βj =
∥∥∥f (j)

1

∥∥∥
x
, γj =

∥∥∥f (j)
2

∥∥∥
y
, j = 1, 2, 3, ...

(21)
and generated support functions are defined as

uj+1(x) =
f
(j)
1 (x)∥∥∥f (j)
1

∥∥∥
x

, vj+1(y) =
f
(j)
2 (y)∥∥∥f (j)
2

∥∥∥
y

(22)

This equality implies that f (j)(x, y) tends to vanish
when j grows unboundedly up to infinity. This can
happen only when the uj functions and/or vj functions
form basis sets separately. If this happens then we can
arrive at the following ultimate decomposition

f(x, y) =
∞∑
j=1

αjuj(x)vj(y)

+
∞∑
j=1

βjuj+1(x)vj(y)

+
∞∑
j=1

γjuj(x)vj+1(y). (23)

where the univariate uj(x) functions form an in-
finite orthonormal function set so do the vj(y) func-
tions separately. This equality can be rewritten in the
following concise form [20–28]

f(x, y) = U(x)T KT V(y) (24)
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Now, we obtain the concise matrix format like three
factor matrix product whose kernel is in tridiagonal
matrix form, symbolized with KT.

3 Numerical Implementations
This section includes discussion convergences, com-
putational complexities of this procedure by present-
ing a number of numerical examples for given bivari-
ate functions.

As a first example, cos (x+ y) is chosen which is
not multiplicative form.

KT ≡
[
0.496751 0.227949
0.227949 −0.041087

]
such that

U ≡
[

1
−2.17922 + 3.69149cos(x)− 2.01667sin(x)

]
,

V ≡
[

1
−2.17922 + 3.69149cos(y)− 2.01667sin(y)

]
,

In this first kind of example for TKEMPR method, the
approximation is constructed by using 2x2 matrices.
In other words, recursion is used for two steps. When
we also do the norm analysis here, we get the norm
value as 0.000499992 in working precision 20. Red
surface belong to the exact function, blue one belong
to the approximated function.

Figure 1: cos(x+ y), in the interval [0, 1], n = 2

KT ≡

 0.496751 0.227949 0.
0.227949 −0.041087 0.012163

0. 0.0121633 −0.001016


such that

U ≡

 1
−2.17922 + 3.69149cos(x)− 2.01667sin(x)
−26.10199 + 23.74800cos(x) + 13.31033sin(x)



V ≡

 1
−2.17922 + 3.69149cos(y)− 2.01667sin(y)
−26.10199 + 23.74800cos(y) + 13.31033sin(y)


In the second kind of example, the approximation

is constructed by using 3x3 matrices. This means,
the recursion for vanishing the residual component in
the method is used for three steps. The norm value
is determined as 2, 90969.10−31 in working precision
20 [29–32].

Figure 2: cos(x+ y), in the interval [0, 1], n = 2

As a second example (ex + ey)/(1 + x+ y) is
chosen. Similarly, we apply the method into 2x2 ma-
trix product form. But in comparsion with the pre-
vious example, this function has more computational
complexities which depend on its structure. So the de-
composed left and right support vectors will be non-
apparent when they are written. However, the kernel
matrix KT can be written as the following form

KT ≡
[
1.72098 0.03487
0.03487 0.00477

]

In the figure given below, it is shown the exact func-
tion and approximated function. The norm value is
determined as 0.0000378336.

Figure 3: (ex + ey)/(1 + x+ y), in the interval [0, 1],
n = 2
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4 Concluding Remarks
The TKEMPR method can be considered as the con-
cise matrix format like three factor matrix prod-
uct whose kernel is in tridiagonal matrix form as
U(x)TKTV(y). The results obtained here and in
previous works support that the methodcan easily in-
corporate into any bivariate functions to approximate
well. This is also can be expand to the multivari-
ate functions. It will be discussed in the next future
works. From the results shown in figures and error
analysis, we can see that increasing the dimension,
or namely increasing the recursion for vanishing the
residual component, reduces the error of the approx-
imation method. It is observed that there is no need
for us to enhance the recursion steps to great values.
However, there can be computational difficulties be-
cause of the target functions. We obtain approxima-
tion in sufficiently good quality through the method.
After constructing this method into a general algo-
rithm for all multivariate functions, the performance
of the TKEMPR method can be seen in more detail.
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