Electrophysical Modelling and Analysis of Electrical Transmission in Axons

Yumi Takizawa
Institute of Statistical Mathematics
Research Organization of Information and
Systems, JAPAN
takizawa@ism.ac.jp

Atsushi Fukasawa Former Professor, Chiba University, JAPAN fukasawafuji@yahoo.co.jp

Abstract: - The axon transmits electrical signals of pulse and plateau from the soma to output synapse for post neurons. Transmission loss and velocity are extremely low and faster in the axon with myelination and large diameter. The electro-saltatory transmission model was said for lossless and high velocity transmission. By this model, almost all electrical energy are transmitted not inside but outside of the axon. It causes severe cross-talk among axons. This paper first gives effective models and analysis for axons without myelination and small diameter. Based on the above, transmission characteristics with myelination and large diameter are solved in equations. It was found that (a) wider transmission bandwidth is realized by myelination and large diameter. (b) Na⁺ channels gathered between myelinations helps low loss transmission with increased positive ions.

Key-Words: - Electrophysical modelling of axon, Myelination and unmyelination in axon, Velocity and bandwidth, Attenuation, Phase rotation, The electro-saltatory transmission of the nerve impulse.

1 Introduction

The axon transmits chemical matters of the vesicles, mitochondria, synthetase, and precursor of proteins for synaptic vesicles produced in the soma.

The axon also transmits electrical signals (pulse and plateau) generated in neural cells.

Generation of electrical signal (action potential) and its transmission (conduction) to post neurons are essential functions of a neuron. Dendrite and axon work as input and output ports of a cell (neuron). Input and output of axon are at hillock and at axon terminal. Synapses work for connection chemically with previous and post neurons.

Lossless and fast signal transmission were observed in myelinated and thick axons by G. Kato, 1923[1]. An early model of axon transmission was given by G. Kato and I. Tasaki, 1934[2], 1939[3]. Generation and transmission are combined in this model. Active transmission model with higher electro-magnetic mode (*Ez* mode) was given by H.S. Gasser, 1936[4]. But any scheme was not given about activity.

Afterward variety of data on velocities were measured about various axons by A. Siegel and H. Sapru, 2014[5].

In advance, it should be pointed that early neuron and axon models do not meet electro-physical requirement. Novel models of neuron and axon are given separately by former papers [6-11] and this paper by the authors.

This paper present electro-physical modelling of axon transmission, without and with myelins. Electro-physical modelling and equivalent circuit are first given for the axon without myelins. Modelling and equivalent circuit are then given for the axon with myelins, which provide axons with higher transmission velocity by reduction of parallel capacities.

ISSN: 2534-885X 14 Volume 2, 2017

2 Electro-physical Modelling of Unmyelinated Axon

2.1 Modelling of unmyelinated lossless axon

Electro-physical modelling of unmyelinated axon is shown in Fig. 1. Cytoplasm and external liquid are separated by membrane. Liquid medium are used for inner and outer conductors to compose a coaxial waveguide.

Electrical current flows forward along inner conductor and returns along inner surface of outer conductor. Current flow induces electric and magnetic fields E and H along the guide. Energy (or power) flow is given by the Poynting vector p.

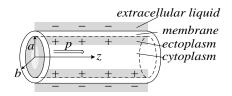


Fig. 1 Electro-physical modelling of axon.

The cylinder coordinate system r, θ , z is used for electrical analysis. Electrical signal transmission is done by TEM (transversal electric and magnetic) mode.

Radial E and circular H vectors exist in cross-sectional (r, θ) plane. where,

$$p = E \times H \tag{1}$$

where, E, H, p are defined clockwise.

a and b are radius of conductors in Figure. In dielectric medium, radial length dr is considered at point r.

True electric charges $\pm q$ are given on the inner and outer conductors per unit length. Capacitance C is calculated as follows.

$$E = \frac{q}{2\pi\varepsilon r}$$
 [V/m] (2)

$$v = \int_a^b E \, dr = \int_a^b \frac{q}{2\pi\varepsilon \, r} \, dr \tag{3}$$

$$= \frac{q}{2\pi\varepsilon} \ln \frac{b}{a}$$
 [V] (4)

where, E, v are electric field strength in the space and the potential difference (voltage) of inner and outer liquid conductors. Capacity per unit length is given as;

$$C = \frac{q}{v} = \frac{2\pi\varepsilon}{\ln\frac{b}{a}}$$
 [F/m] (5)

Inductance *L* is calculated as follows.

$$H = \frac{\mu i}{2\pi r}$$
 [H/m] (6)

$$\Phi = \int_a^b H \, dr = \int_a^b \frac{\mu i}{2\pi r} \, dr \quad [\text{Wb}] \quad (7)$$

where, H, i are magnetic field strength in the space and the current of inner and outer liquid conductors. B and Φ are density and total flux of magnetic field strength in space between inner and outer liquid conductors.

Inductance per unit length is given as;

$$L = \frac{\Phi}{i} = \frac{\mu}{2\pi} \ln \frac{b}{a}$$
 [H/m] (8)

It is pointed that permittivity ε and permeability μ in MKSA system of cytoplasm and outer liquid are as follows;

$$\varepsilon = \varepsilon_0 \varepsilon_r$$
 [F/m] (9)
$$\varepsilon_0 = \frac{4}{3} \pi \times 10^{-12}$$

$$\mu = \mu_0 \mu_r$$
 [H/m] (10)

$$\varepsilon_0 \ \mu_0 = \frac{1}{c_0^2} \tag{11}$$

 $\mu_0 = 4\pi \times 10^{-7}, \quad \mu_r = 1$

here, c_0 is the light velocity in vacuum.

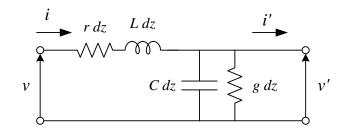


Fig. 2 Equivalent circuit of unmyelinated axon of length dz with loss.

Usual voltage of action potential of a neuron is about 100 mV. But current value is so little that the current flows almost the peripheral of inner conductor.

When the distribution is assumed exponential, effective depth δ of penetration is given as;

$$\delta = \sqrt{\frac{2}{\omega \sigma}}$$
 [m] (12)

where, $\boldsymbol{\sigma}$ is conductance of inner and outer liquid.

2.2 Modelling of unmyelinated axon with loss

The equivalent circuit of the model is shown in Fig.2. The following equations are obtained from conditions of voltage equilibrium and current continuity.

$$v = L dz \frac{di}{dt} + i r dz + v' \quad [V]$$
 (13)

$$i = C dz \frac{dv'}{dt} + g dz v' + i' [A]$$
 (14)

and,

$$v - v' = dv [V] (15)$$

$$i - i' = di [A] [A]$$

From Eqs. $(13) \sim (16)$,

$$\frac{dv}{dz} = L\frac{di}{dt} + ir \qquad [V/m] \quad (17)$$

$$\frac{di}{dz} = C \frac{dv'}{dt} + g v' \qquad [A/m] \quad (18)$$

From Eq. (17) and (18),

$$\frac{d^2v}{dz^2} = L\frac{d}{dz}\left(\frac{di}{dt}\right) + r\frac{di}{dz} \tag{19}$$

$$\frac{d}{dt}\left(\frac{di}{dz}\right) = C\frac{d}{dt}\left(\frac{dv'}{dt}\right) + g\frac{dv'}{dt} \qquad (20)$$

From (19) and (20), W

$$\frac{d^2v}{dz^2} = LC\frac{d^2v'}{dt^2} + (gL + rC)\frac{dv'}{dt} + rgv'$$
(21)

When *v* is sinusoidal, it is written as,

$$v = \exp(j\omega t)$$
 [V] (22)

$$\frac{d^2v}{dt^2} = -\omega^2v\tag{23}$$

v' is replaced by v if dv/v' is small enough.

$$\frac{d^2v}{dz^2} = \{-\omega^2 LC + j\omega (gL + rC) + rg\} v \quad (24)$$

$$= \left\{ (j\omega\sqrt{LC})^2 + j\omega\sqrt{LC} \left(\frac{r}{\sqrt{\frac{L}{C}}} + \frac{g}{\sqrt{\frac{C}{L}}}\right) + rg \right\} v$$

(25)

ISSN: 2534-885X 16 Volume 2, 2017

$$\frac{d^2v}{dz^2} \approx \left\{ \frac{1}{2} \left(\frac{r}{\sqrt{\frac{L}{C}}} + \frac{g}{\sqrt{\frac{C}{L}}} \right) + j\omega\sqrt{LC} \right\}^2 v \quad (26)$$

General solution of v on time and space is given as follows:

$$\exp(-j\omega t) v = v_1 \exp\{-j(\omega t + \gamma z)\}$$
$$+ v_2 \exp\{-j(\omega t - \gamma z)\}$$
(27)

It is found that v_1 and v_2 are components of signals transmitting forward and backward directions of z. Now, γ is transmission coefficient of transmitting wave signals, α and β are attenuation and phase (rotation) constants of γ .

$$\gamma \approx \frac{1}{2} \left(\frac{r}{\sqrt{\frac{L}{C}}} + \frac{g}{\sqrt{\frac{C}{L}}} \right) + j\omega\sqrt{LC} \quad (28)$$

$$= \alpha + j\beta \quad (29)$$

Phase velocity c is defined by time-differential of equal phase points along z axis.

$$\frac{d}{dt}(\omega t + \gamma z) = \omega + \gamma \frac{dz}{dt} = 0$$
 (30)

$$c = \frac{dz}{dt} = \left| \frac{\omega}{\gamma} \right|$$
 [m/s] (31)

$$\approx \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$
 [m/s] (32)

Transmission time T of length l is given as;

$$T = \frac{l}{c}$$
 [s] (33)

where, r, g are assumed small enough compared to $\sqrt{L/C}$, $\sqrt{C/L}$ respectively. Lossless transmission is realized when r and g are zero approximately.

It is found that velocity c depend on dimensions a and b of the axon. It is also found that long transmission is available by the aid of positive ions injected in the axon.

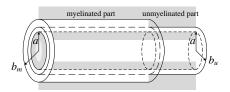


Fig. 3 Electro-physical modelling of axon with myelinated and ummyelinated parts.

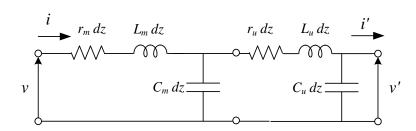


Fig. 4 Equivalent circuit of axon with myelinated and ummyelinated parts. L_m , C_m , and L_u , C_u are circuit parameters corresponding to myelinated and unmyelinated parts of an axon.

ISSN: 2534-885X 17 Volume 2, 2017

3 Electro-physical Modelling of Myelinated Axon

3.1 Electrical scheme of myelinated axon

Myelinated axon is composed by long myelinated and short unmyelinated parts as shown in Fig.3. A myelinated part is made by a glia cell. The distance between inner and outer conductors is expanded with multiple windings of a glia cell. Unmyelinated part appears between adjacent myelinated parts caused by adjacent glia cells.

The capacity Cm at myelin part is reduced to be less values than the capacity Cu at unmyelinated part in Fig. 4. On the other hand, inductance L is reduced as low as the cross sectional dimension increases.

Na⁺ ions are injected into the axon through Na+ channels distributed at each unmyelinated part.

3.2 Characteristics of Myelinated axon

Myelinated axon is shown in Fig. 4. L_m and C_m are inductances and capacitance of the myelinated part. L_n and C_n are inductances and capacitance of unmyelinated part.

The following relations are pointed as follows;

$$Lm = Lu = L \tag{37},$$

$$Cm << Cu = C \tag{38},$$

and,

$$lm \gg lu$$
 (39)

then,

$$\omega_C$$
 (myelinated) >> ω_C (unmyelinated) (40)

It is found that transmission of wideband signals through long axons is realized by myelination of axon. Then sharp pulses are realized to transmit for long distance by myelination.

It is concluded that larger information per unit time is realized by myelination.

Wideband transmission is realized by the effect of reduction in L and C.

Long distance transmission is realized by reduction of attenuation by increase of conductance.

3.3 Cutoff angular frequency

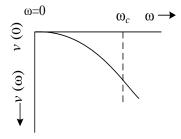


Fig. 5 Frequency characteristics and cut off ω_C . When transmission coefficient γ is complex number;

$$\gamma(\omega) = \alpha(\omega) + j\beta(\omega) \tag{41}$$

 $\alpha(\omega)$ and $\beta(\omega)$ are attenuation and phase shift of signal transmission.

Signal transmission characteristics depends on the frequency ω . The frequency characteristics of signal transmission is expressed by Fig. 5.

At the end of line z = l,

$$v(\omega, l) = v(0, l) \exp\{-(\alpha + i\beta)\omega\}$$
 (42).

 ω_c is the cutoff angular frequency at the point, where amplitude decreases equal to 1/e of v(0). e is the basis of natural logarithm.

$$\left| v(\omega_c, l) \right| = \exp\left\{ -\frac{1}{e} v(0, l) \right\} \tag{43}$$

$$\omega_c = 1/\sqrt{LC} \tag{44}$$

It is found that cutoff angular frequency ω_C increases depending on product values of LC.

3.4 Long distance transmission

It was found by G. Kato that Na^+ channels distribute at discrete points of unmyelinated part of axon. It shows that ε could be controlled by influx and efflux of positive ions. If positive ions are taken much into axon, effective ε decreases lower, and reduction of transmission time τ of signal.

Many ion channels could exist at large diameter of axon. It is concluded that the signal transmission (phase) velocity becomes higher as increase of size of cross section of axon.

4 Higher Mode Transmission with the Axon

If wavelength λg of transmitting wave signals is longer enough compared a half of spacing b-a, only Transversal Electric and Magnetic (TEM) mode is transmitted. TEM mode is the dominant mode of coaxial line.

If wavelength λg is shorter than a half of spacing b-a, higher mode is excited from the dominant mode.

$$b - a > \frac{1}{2}\lambda_g \tag{45}$$

$$\lambda_g = \frac{1}{\sqrt{\varepsilon}} \lambda_0 \tag{46}$$

where, λ_0 , λ_g are the wave length of signal in free space and in liquid.

Typical higher mode Ez is excited inside the line. Longitudinal electric vector Ez occurs along z axis. However if higher mode is brought from dominant TEM mode, not only signal power varies but also higher mode works as noise against signal, it causes data error and reduction of reliability of communication systems.

The electro-saltatory transmission along an axon with myelin was presented by I. Tasaki (1939)[3]. He proposed that rapid transmission with saltatory effect, which means leaping transmission of current between myelins outside the axon. This provides unreasonable result of signal transmission not inside but outside the axon.

The electro-saltatory transmission implies signal transmission by Ez component provides not only low reliable transmission but also severe crosstalk among parallel axons in a neural system.

5 Conclusion

The fundamental characteristics of axons are first analyzed in this paper.

It is clarified that signal transmission (phase) velocity in axon depends on inductance L and capacitance C of axon which are defined by cross-sectional dimension of axon with and without myelins.

It is also clarified that wideband and long distance transmission are realized with large (thick) cross-section and with myelins.

It is also presented that decrease of resistance of the axon is brought by injection of positive ions through ion channels distributed at unmyelinated part of axon.

References:

- [1] Kato G., The Theory of Decrementless Conduction in Narcotised Region of Nerve, 96, 1924.
- [2] Kato G., The Microthysiology of Nerve, 1934.
- [3] Tasaki I., The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber". *Am. J. Physiol.* 127: 211-227, 1939.
- [4] Gasser H.S., The Nobel Prize in Physiology or Medicine 1944, http://www.nobelprize.org/nobel_prizes/medicine/laureates/1944/gasser-bio.html.
- [5] Siegel A., Sapru H.N., Essential Neuroscience, the third edition, p.257, 2014.
- [6] Fukasawa A., Takizawa Y., Activity of a Neuron and Formulation of a Neural Group for Synchronization and Signal Processing, *Proc. of the Int. Conf. on Neurology*, pp.242-247, Kos, Greece, July 2012, "The Best Paper Prize of NEUROLOGY'12" awarded by WSEAS/NAUN.
- [7] Fukasawa A. Takizawa Y., Activity of a Neuron and Formulation of a Neural Group for Synchronized Systems, *International Journal of Biology and Biomedical Engineering*, Issue 2, vol. 6, pp. 149-156, 2012.
- [8] Fukasawa A., Takizawa Y., Activity of a Neuron and Formulation of a Neural Group based on Mutual Injection in keeping with system synchronization, *Proc. of International conference on Circuit, Systems, Control, Signals (CSCS'12)*, pp. 53-58, Barcelona, Spain, Oct. 17, 2012.

- [9] Fukasawa A., Takizawa Y., Activities of Excitatory Cells of Neuron and Unicellular Organism, *Proc. of International Conference on Health Science and Biomedical Systems* (HSBS'14), pp.11-15, Nov., 2014.
- [10] Takizawa Y., Fukasawa A., Activities of Excitatory Cells of Neuron and Unicellular Organism, International Journal of Biology and Biomedical Engineering, vol.9, pp.98-103, 2015.
- [11] Takizawa Y., Fukasawa A., Excitation of a Neuron for Characteristic Potential Generation, WSEAS Transactions on Biology and Biomedicine, vol. 12, pp.69-78, 2015.
- [12] Takizawa Y., Fukasawa A., Formulation of Topographical Mapping in Brain with a Synchronous Neural System, Proceedings of the 15th International Conference Computational Mathematical Methods, Intelligent **Techniques** and Systems (MAMECTIS'13), pp. 60-65, Lemesos, Cyprus, Mar. 21-23, 2013.
- [13] Stetson D.S.; Albers J.W.; Silverstein B.A., Wolfe R.A., "Effects of Age, Sex, and Anthropometric Factors on Nerve Conduction Measures", Muscle & Nerve 15, 1095–1104, October 1992.
- [14] Hodgkin A. L., Huxley A. F., "A quantitative description of membrane current and its application to conduction and excitation in nerve," Journal of Physiology, vol. 117, pp. 500-544, 1952.
- [15] Fukasawa A., Takizawa Y., Electrophysical Modelling and Analysis of Axon in Neurons, *International Journal of Biology and Biomedicine*, Volume 1, 2016.