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1. Introduction 
The purpose of the work is to establish the 
generality of experimental and numerical 
methods, the adequacy of the description of 
the continuum using discrete representations 
of computational mathematics, and the study 
of the choice of basis functions for 
calculation errors. A possible reason for the 
fact that the impossibility of description using 
regular theories is practically recognized lies 
in the imperfection of mathematical models 
and calculation algorithms. The experiment 
deals with material objects, i.e. the results are 
averaged data over the elementary volumes, 
which can be presented in the form of an 
integral form. Computational mathematics 
always deals with dimensional quantities. 
Differential equations are related to the field 
representation of physical quantities and are 
obtained from integral equations under the 
additional condition that functions are 
smooth, i.e., the space of piecewise 
continuous functions becomes the space of 
smooth functions. Therefore, 
mathematically, we are dealing with another 
space, i.e., instead of discrete space (for 
example, piecewise-continuous), we work in 
a narrower-continuous one. These spaces 
have different representations when 

expanded in a Fourier series. The first can be 
represented by a Fourier series only in the 
region of smoothness (in difference schemes, 
between nodes with stitching at the nodes), in 
the second case, in the entire region. This 
means that an exact adequate representation 
of functions using difference schemes is 
impossible even for schemes of a high order 
of accuracy. You can only count on the 
optimal solution to the problem. Currently, 
there are two areas of research: one is related 
to the development and use of computational 
programs without proper detailed analysis, 
the other involves the use of the apparatus of 
mathematical physics without checking the 
convergence of the obtained asymptotic 
formulas and their practical verification by 
numbers. However, a mixed approach is 
needed. It is impossible to start solving a 
problem without an analytical study of the 
problem, at least on the simplest reference 
problems. Physics dictates the solution 
method and the choice of numerical scheme. 
This should be done especially carefully 
when calculating on parallel computers. 
Verification of the results of numerical 
studies by analytical methods and 
comparison with experiment make it possible 
to guarantee the reliability of the results. 
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Most problems are non-linear. This does not 
allow proving theorems and writing the 
theory in a general form. That is why the role 
of mathematical analysis and the construction 
of reference problems of the required type, 
containing the main features of the problems 
being solved, increases. Analysis is very 
important in constructing a physical picture 
of a phenomenon based on the results 
obtained by previous researchers by 
numerical or asymptotic methods. Errors in 
solving more "rough" problems can be an 
order of magnitude larger or of the same 
order as the desired values The question of 
building a model is very important. Closed 
systems and representations of fields are 
currently being investigated. The theory is 
based on Hamilton's formalism and 
Liouville's formula for a closed system. 
Mathematical properties are studied without 
boundary conditions [1-3] The 
phenomenological representation was also 
used: normal flows, volume and surface 
effects were evaluated, all forces were 
considered additive. Dimensions rushed to 
zero. It was at this stage that the 
phenomenological consideration of the 
observed changes in the modules of 
quantities for elementary volumes 
established the symmetry of the tensor for 
equilibrium conditions. Since 
mathematicians worked with one-
dimensional and two-dimensional systems, 
everyone was satisfied with the idea of the 
symmetry of the tensor: at relatively low 
speeds, the results of determining quantities 
important for practice coincided with the 
experiment. Separate phenomena did not fit 
into the theory, in particular, turbulence, 
description of processes in nanostructures, 
and others. Experimental results have 
appeared that speak about the influence of not 
only the physical quantities themselves, but 
also their gradients 
[4,5]. In mechanics, it is customary to 
consider the Lagrange function for non-
interacting and collectively interacting 
particles for closed and open systems in the 
same way, which is doubtful, especially for 
metallic and ionic bonds. It is believed that 
the reliability of classical mechanics has been 
verified by experiment and kinetic theory. To 

rely on the kinetic theory, which gives the 
same results as continuum mechanics, do not 
allow the hypotheses underlying the kinetic 
theory. The theory is statistical and is suitable 
for a large number of particles. The 
distribution function depends on time 
through the time dependence of macro 
parameters. Hilbert's hypothesis is fulfilled, 
the consequence of which is the symmetry of 
the stress tensor. In all works, including the 
works of N.N. Bogolyubov [3], this 
hypothesis underlies the theory. The 
hypothesis assumes that the values of 
macroparameters can be calculated from the 
zeroth approximation for the equilibrium 
distribution function. Therefore, according to 
the hypothesis, the values for the equilibrium 
distribution function with the 
macroparameters found from the Euler 
equations and the Navier-Stokes equations 
coincide. As is known, the differences are 
significant in areas with large slopes. Any 
equilibrium distribution function ensures the 
symmetry of the stress tensor and the absence 
of the influence of the angular momentum. In 
the classical approach, the law of 
conservation of angular momentum is 
constructed, but not applied. Theoretically, 
this is due to the incomplete taking of the 
integral by parts when obtaining conservation 
laws and ignoring the out-integral term 
present in the Ostrogradsky-Gauss theorem 
[6]. The symmetry of the stress tensor leads 
to a violation of the “continuity” of the 
medium. Mathematically, this circumstance 
follows from the choice of the conditions for 
the balance of forces as the conditions for the 
equilibrium of an elementary volume. 
The choice of joint conditions for the balance 
of forces and moments of forces leads to new 
formulations of the equations. Consequently, 
under the condition of the balance of forces, 
we arrive at one or another classical 
formulation of continuum mechanics.The 
transition to differential equations is carried 
out in two ways: using the main lemma (the 
theory of elasticity) or taking the integral by 
parts. When taking the integral by parts, as 
already noted, in addition to the well-known 
classical integrals of mechanics, an external 
integral term (the Ostrogradsky-Gauss 
theorem) should have appeared, but in 
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mechanics it was ignored. The possibility of 
using the Ostrogradsky-Gauss theorem when 
constructing the stress tensor only in the 
normal direction has not been substantiated. 
There is no reason to choose a pressure equal 
to one third of the normal pressures on the 
sides of an elementary volume; Pascal's law 
for the equilibrium case is transferred to the 
non-equilibrium one. 
 

Physical models differ from mathematical 
ones by replacing a point with finite objects, 
that is, open non-stationary systems that are 
close to reality are investigated. The 
openness of the system and the exchange of 
physical quantities changes the equations. 
The dimension of elementary volumes 
brings computational and physical models 
closer to real objects. 
In addition to continuum models, stochastic 
methods are often used in mechanics and 
physics. Historically, methods for describing 
physical processes using distribution 
functions (Boltzmann's equations, the 
Leontovich kinetic equation, the Langevin 
method, the Fokker-Planck equation, the 
Wigner functions, etc.) arose first. Methods 
of molecular dynamics and Byrd's method 
appeared later, with the growth of the 
possibilities of technology, although 
Newton's equation was always used. Then the 
question arises about the computational 
method (analytical methods can rarely be 
used) based on the integral representation of 
the problem or on the differential 
formulation. The most well-known methods 
with an integral statement belong to the group 
of variational methods. More often-finite 
element method. The choice of basis function 
is important here. Approximation within the 
selected elementary volume is different for 
different methods. For systems of equations, 
transformations are sometimes made in order 
to obtain one equation from the system, albeit 
of a high order. The transition requires 
additional differentiation of the equations. 
Thus, once again the domain of definition of 
the problem changes. 
 
Difference schemes can be constructed using 
variational principles or using direct 
approximation of differential equations. In 

the first case, as a rule, simple basis functions 
that are not smooth are used. In the 
variational formulation of the problem, the 
main attention is paid to the preliminary 
planned approximation of the function on a 
given subdomain (on a selected element); in 
the second case, for difference schemes, an 
approximation on a subdomain (selected grid 
cell) is built after solving the problem. From 
the integral formulation of the problem 
obtained in the experiment, one can obtain 
various differential equations. The equations 
are identical and transform into each other 
with a continuous distribution of quantities, 
which is what we have in field theory, but 
when passing to a discrete description, they 
differ from each other and do not transform 
into each other by any transformations, 
except for special cases. Sometimes it is 
possible to bring the results closer by 
applying the Lagrangian formulation of the 
problem and constructing conservative 
difference schemes. It is impossible to build 
a completely conservative difference scheme 
in the Cartesian coordinate system, but one 
can approach such a scheme [7]. For 
example, in the theory of elasticity or 
aeromechanics. In this case, additional 
requirements for the boundary conditions 
arise. It turns out a wide matrix even with the 
simplest approximation. They are currently 
trying to apply the Rune-Kutta method to 
solve a system of partial differential 
equations. An analysis of the error at the 
"claimed accuracy" of a fourth-order solution 
yields only second-order accuracy. It should 
be borne in mind that the most common 
difference scheme, the flow method, despite 
the integral formulation, does not correspond 
to the original formulation of the problem, 
since it proceeds from equations with a 
symmetric tensor. 
  
 
2. A little about the models  
The role of the Ostrogradsky-Gauss theorem 
was discussed earlier in [6]. Here we will 
focus on the phenomenological derivation of 
the momentum conservation law. In the 
phenomenological definition of the action of 
forces, the condition of equilibrium of an 
immobile elementary volume (without 
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liquid) is used. The static distribution of 
forces is used (Fig. 1) and the equation of 
projections on the axes of Cartesian 
coordinates [8] 
𝑝𝑛𝑥  =  𝑛𝑥 𝑝𝑥𝑥 +  𝑛𝑦𝑝𝑦𝑥 +  𝑛𝑧𝑝𝑧𝑥 ,   
𝑝𝑛𝑦  =  𝑛𝑥 𝑝𝑥𝑦 +  𝑛𝑦𝑝𝑦𝑦 + 𝑛𝑧𝑝𝑧𝑦 ,   
𝑝𝑛𝑧  =  𝑛𝑥𝑝𝑥𝑧  +  𝑛𝑦𝑝𝑦𝑧 +  𝑛𝑧𝑝𝑧𝑧 .       (1) 
Based on this, it is concluded that  
𝒑𝒏 = 𝒏 ∙  𝑃 . 
 

𝑃 = (

𝑝𝑥𝑥 𝑝𝑦𝑥 𝑝𝑧𝑥

𝑝𝑥𝑦 𝑝𝑦𝑦 𝑝𝑧𝑦

𝑝𝑥𝑧 𝑝𝑦𝑥 𝑝𝑧𝑧

)                                  (2) 

  

 Fig. 1. Elementary volume used in the 
construction of a theory. 

On the basis of this tensor for an equilibrium 
system, the equations of motion are written in 
integral form and the Ostrogradsky-Gauss 
theorem is used without an external integral 
term. A conclusion is also made about the 
symmetry of the stress tensor and the 
predominance of surface effects compared to 
volume ones. All continuum mechanics is 
based on these conclusions. The kinetic 
theory is based on a closed volume. 
Accordingly, flows through the boundary of 
the elementary volume are not taken into 
account. The Liouville equation, from which 
the rest of the equations are derived, is 
written for a closed system. 
    In [9-15], an algorithm for constructing a 
solution to a problem with an  no symmetric 
tensor is given if the solution to the problem 
with a symmetric tensor is known. We give 
examples of solutions. 
 

3. Influence of the moment in the 

Couette flow 
 Consider a flow between two parallel flat 
walls, one of which  rests, and the other 
moves in its plane with a constant speed 𝑈.  
𝑑𝑃

𝑑𝑥
  is a given function [8]. Further, u is the 

speed, y is the normal coordinate, h is the 
distance between the planes. 
Let us trace the change of the solution taking 
into account the influence of the moment in 
comparison with the classical one. 
When considering the fluid flow near an 
infinite plate, for our case we obtain  
𝑑

𝑑𝑦
 (𝜇

𝑑𝑢

𝑑𝑦
) +  

𝑑

𝑑𝑦
( 𝜇𝑦

𝑑2𝑢

𝑑𝑦2 ) =0.                   (3) 

𝑢 = 0, 𝜇
𝑑𝑢

𝑑𝑦
  =  𝜏𝑤 , 𝑦 = 0, 

𝑢 =  𝑈∞,    𝑦 → h 
Integration gives 
𝜇

𝑑𝑢

𝑑𝑦
 + 𝜇𝑦

𝑑2𝑢

𝑑𝑦2 = const. = 𝜏𝑤.            
Due to the boundary conditions the constant 
is equal to 𝜏𝑤 and, as in a turbulent layer, the 
constant must be specified. Then 

i𝑢 = 𝐶 ∙ 𝑙𝑛𝑦 +
𝜏𝑤

𝜇
 ∙ 𝑦 + 𝑐𝑜𝑛𝑠𝑡.             (4) 

A possible variant of satisfying the boundary 
conditions on the wall is that at 𝑦 =  

𝜈

𝜈∗
, 

where, 
 

  𝜈 =
𝜇

𝜌
  ,       𝜈∗ =  (

𝜏𝑤

𝜌𝑤
)1/2 ,  large, but 

the zero velocities at the two boundaries of 
the wall layer do not allow flow in the 
opposite direction. The thickness of the 
"resting" liquid at Reynolds numbers is 10-3 
cm. Indeed, 𝐶 ∙ 𝑙𝑛𝑦 = 0.  A further decrease 
in velocity occurs before it vanishes, the 
derivative becomes very large for air at one 
atmosphere, when the plate moves at a speed 
of 300 km / h at a distance of 0.2 m with a 
total plate length of 2 𝑚 for 𝑚2/ s. 
It should be noted that such a profile will 
always be present inside the boundary layer 
and corresponds to the inertial interval (A. N. 
Kolmogorov). It should be noted that there is 
no asymptotic transition from a solution for a 
semi-infinite plate to a solution for an infinite 
plate. For a semi-infinite plate, friction at 
infinity tends to zero and at 𝜏𝑤= 0 one can 
obtain the Prandtl-Karman mixing length. 
The classical version corresponds to the 
linear profile. Hence it can be concluded that 
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the viscosity should work in two areas: 
directly near the surface and at the outer 
boundary. In the stationary case, the amount 
of dissipated energy near the external 
boundary will be equal to the amount of this 
energy near the wall. The behavior of the 
velocity 𝑢 will depend mainly on the vertical 
component of the velocity and the 
perturbations of the longitudinal velocity at 
the outer boundary. 
For our case, the classical equation and 
solution have the form 
𝑑

𝑑𝑦
 (𝜇

𝑑𝑢

𝑑𝑦
) =  

𝑑𝑃

𝑑𝑥
 ,  for 𝜇 = 𝑐𝑜𝑛𝑠     𝑢 =

 
𝑦

ℎ
 𝑈 −  

ℎ2

2𝜇
 
𝑑𝑃

𝑑𝑥
 
𝑦

ℎ
  (1 −  

𝑦

ℎ
 ).                    (5) 

Equation with moment 
𝑑

𝑑𝑦
 (𝜇

𝑑𝑢

𝑑𝑦
) +  

𝑑

𝑑𝑦
( 𝜇𝑦

𝑑2𝑢

𝑑𝑦2 ) =  
𝑑𝑃

𝑑𝑥
 ,         (6) 

𝑢 =
𝑑𝑃

𝜇𝑑𝑥
 𝑙𝑛𝑦 + 𝐶 

𝑦2

2
+ 𝐷𝑦 + 𝐵. 

 Near the surface, you can use the 
representation of ln y in a row. 
𝑙𝑛𝑦 = 2 [ 

𝑥−1

𝑥+1
+

(𝑥−1)3

(𝑥+1)3 + ⋯                   (7) 
Near the wall, where the velocities are small 
or zero, the solution becomes classical (no 
torque). An important factor is the identity of 
the formulas for laminar and turbulent 
motions.  Let us consider a variant of 
movement at a low given speed of movement 
of the lower plate. 
.ℎ𝑠 =  𝜀 cos 𝑘𝑥   is small 
Friction must also be specified on this 
boundary. It can be assumed that since the 
velocity near the wall is small, there is an 
excess of boundary conditions, then to 
determine the constants it will be necessary 
to solve a system of equations and one of the 
solutions will be the value of friction without 
taking into account the moment. 
 
 
 
 
 
4. Influence of the asymmetric stress 

tensor in the problem of steady 

oscillations of viscoelastic 

rectangular plates 
The purpose of this part of the work is to 
illustrate a method for solving a three-
dimensional problem with an  no symmetric 

stress tensor [9,10]. Some provisions of the 
theory of elasticity are no longer valid for an 
no symmetric stress tensor. For example, for 
two opposite sides of an elementary volume, 
we obtain our own direction of principal 
stresses 
𝑡𝑔 2𝜃1 =  

𝟐𝝉𝒙𝒚

𝝈𝒙− 𝝈𝒚
 ,    𝑡𝑔 2𝜃2 =  

𝟐𝝉𝒚𝒙

𝝈𝒙− 𝝈𝒚
   (8) 

and since 𝛕𝐱𝐲 ≠ 𝛕𝐲𝐱, we get different results. 
Thus, at each point there is a main direction 
of stresses. The common principal axis can 
only be determined in terms of integrals. 
 
    The problem of vibrational bending of 
viscoelastic rectangular plates and round 
cylindrical shells was solved in [16]. The 
basic formulas and equations are given, 
which are based on Kirchhoff's hypotheses 
for plates, deformations are considered small 
and obey the linear law of viscoelasticity. 
Here, the influence of the  no symmetric 
stress tensor on the acting forces is traced. In 
the work 
𝜎𝑥 =  

1

1− 𝜈2 ∫ 𝐾 (𝑡 − 𝜏)[ 𝜀𝑥
𝑡

−∞
 (𝜏) +  𝜈 𝜀𝑦 

(𝜏)] 𝑑𝜏,   (𝑥 ⇔ 𝑦 ),                             (9) 

𝜏𝑥𝑦 =  
1

2 (1 + 𝜈)
 ∫ 𝐾 (𝑡 − 𝜏)𝛾𝑥𝑦(𝜏 )

𝑡

−∞

 𝑑𝜏, 

Solutions of problems on steady-state 
oscillations under the action of a load of the 
form 
𝑞(𝑥, 𝑦, 𝑡)=∑ 𝑞𝑘

2
𝑘=1  (𝑥, 𝑦) 𝑐𝑜𝑠  [(𝑘 − 1)

𝜋

2
−

 𝜔𝑡 ]                                                      (10) 
for a rectangular plate of finite dimensions, in 
which two opposite sides are hinged, and the 
other two are arbitrary. We have chosen a 
problem to illustrate the method for 
determining the no symmetry of the stress 
tensor. Even when using the Kirchhoff 
hypothesis without taking into account the 
deformation of the sections, the effect of the 
no symmetry of the stress tensor is 
significant. Consider a plate of small 
thickness ℎ = const, in the Cartesian 
coordinate system, the Oxy plane of which is 
aligned with the middle plane of the plate. 
The plate is deformed by transverse load 
distributed over the face 𝑧 =  −ℎ/2 
    𝑞(𝑥, 𝑦, 𝑡) = 𝐿 [𝑞𝑘 (𝑥, 𝑦)], 

Evelina Prozorova
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 5 Volume 9, 2024



𝐿 (𝜑𝑘)

=  ∑ 𝜑𝑘 𝑐𝑜𝑠  [(𝑘 − 1)
𝜋

2
−  𝜔𝑡 ] .

 

2

−∞

 (11) 

For projections of the displacement vector, 
according to the Kirchhoff hypothesis, we 
have 
𝑤 = 𝑤 (𝑥, 𝑦, 𝑡),   𝑢 =  −𝑧

𝜕𝑤

𝜕𝑥
 ,     𝑣 =  

𝜕𝑤

𝜕𝑦  
.  

𝜀𝑥 = -z 
𝜕2𝑤

𝜕𝑥2  ,   𝜀𝑦 = -z 
𝜕2𝑤

𝜕𝑦2  ,   𝛾𝑥𝑦 = -2z 
𝜕2𝑤

𝜕𝑥𝜕𝑦  
 . 

It is assumed that the plate material obeys the 
linear viscoelastic law 
𝜎𝑥 =  

1

1−�̃�2 ∫ 𝐾 (𝑡 − 𝜏)[ 𝜀𝑥
𝑡

−∞
(𝜏) +

 𝜈𝜀𝑦  (𝜏)𝑑𝜏 ,   (𝑥 ⇔ 𝑦 ), 

𝜏𝑥𝑦 =  
1

2 (1+𝜈)̃
  ∫ 𝐾 (𝑡 − 𝜏)𝛾𝑥𝑦(𝜏 )

𝑡

−∞
d𝜏,  (12) 

where 𝜈 is Poisson's ratio and material 
properties do not increase with temperature. 
Deflection 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) is sought in the 
form 𝑤 (𝑥, 𝑦, 𝑡) = 𝐿 [𝑤𝑘 (𝑥, 𝑦)], 
 

{𝜀𝑥 , 𝜀𝑦 , 𝛾𝑥𝑦 , 𝜎𝑥 , 𝜎𝑦  , 𝜏𝑥𝑦 })  

= 𝐿 {𝜀𝑥
(𝑘)

 , 𝜀𝑦
(𝑘) , 𝛾𝑥𝑦

(𝑘) , 𝜎𝑥
(𝑘) , 𝜎𝑦

(𝑘)  , 𝜏𝑥𝑦
(𝑘)} , 

 

𝜀𝑥
(𝑘)  (𝑥, 𝑦, 𝑡)= -z 

𝜕2𝑤𝑘

𝜕𝑥2  ,   𝛾𝑥𝑦
(𝑘) (𝑥, 𝑦, 𝑡) = -

2z 
𝜕2𝑤𝑘

𝜕𝑥𝜕𝑦  
.                                                   (13) 

𝜎𝑥
(𝑘) =  

1

1−�̃�2  𝐿𝐸  ( 
𝜕2𝑤𝑖

𝜕𝑥2
(𝜏) +

 𝜈  
𝜕2𝑤𝑖

𝜕𝑦2
 ),           (𝑥 ⇔ 𝑦 ), 

 

𝜏𝑥𝑦
(л) =  

1

1+�̃�
 𝐿𝐸  (

𝜕2𝑤𝑖

𝜕𝑥𝜕𝑦  
).                       (14) 

 

𝐿𝐸   ( 𝑓𝑖  ) = ∑ (−1)𝑖2
𝑖=1  𝐸𝑖+𝑘−1𝑓𝑖  ,       

 𝐸1 +  𝑖𝐸2  ∫ 𝐾
∞

0

(𝑠)𝑒𝑖𝜔𝑠𝑑𝑠,      𝐸3 =  − 𝐸1 . 

Enter bending and torque moments 

𝑀𝑥(𝑥, 𝑦, 𝑡) =  ∫ 𝑧𝜎𝑥

ℎ

2

−
ℎ

2

𝑑𝑧  ,           

𝑀𝑦(𝑥, 𝑦, 𝑡) =  ∫ 𝑧𝜎𝑦

ℎ

2

−
ℎ

2

𝑑𝑧  ,            

𝐻𝑥𝑦 (𝑥, 𝑦, 𝑡) =  ∫ 𝑧𝜏𝑥𝑦

ℎ

2

−
ℎ

2

 𝑑𝑧 ,                 (15) 

𝑄𝑥  (𝑥, 𝑦, 𝑡) =  ∫ 𝑧𝜏𝑥𝑧

ℎ
2

−
ℎ
2

 𝑑𝑧  ,       𝑄𝑦  (𝑥, 𝑦, 𝑡)

=  ∫ 𝑧𝜏𝑦𝑧

ℎ
2

−
ℎ
2

 𝑑𝑧 ,  

{𝑀𝑥 ,   𝑀𝑦 ,𝐻𝑥𝑦,   𝑄𝑥 , 𝑄𝑦 , 𝑄�̃� }

=  𝐿 {𝑀𝑥 
(𝑘),   𝑀𝑦

(𝑘), 𝐻𝑥𝑦
(𝑘),   𝑄𝑥 

(𝑘), 𝑄𝑦 
(𝑘), 𝑄�̃�

(𝑘)
}. 

 

𝑄�̃� reduced shear force, determined by the 
relation 
Qỹ =  Qy +  

∂Hxy

∂x
 , 

The quantities 
 𝑀𝑥 

(𝑘),   𝑀𝑦
(𝑘), 𝐻𝑥𝑦

(𝑘),   𝑄𝑥 
(𝑘), 𝑄𝑦 

(𝑘), 𝑄�̃�

(𝑘)
 

are functions  𝑥, 𝑦. For 
 𝑀𝑥

(𝑘),   𝑀𝑦
(𝑘), 𝐻𝑥𝑦

(𝑘)   we have 

𝑀𝑥 
(𝑘) =  𝐿𝐷   ((  

𝜕2𝑤𝑖

𝜕𝑥2
 + 𝜈  

𝜕2𝑤𝑖

𝜕𝑦2  ),     (𝑥 ⇔ 𝑦 ), 

𝐻𝑥𝑦
(𝑘) =   (1 − 𝜈 ) ̃ 𝐿𝐷   (

𝜕2𝑤𝑘

𝜕𝑥𝜕𝑦  
 ) ,          (16) 

𝐿𝐷  ( 𝑓𝑖 )=  

∑ (−1)𝑖2
𝑖=1  𝐷𝑖+𝑘−1𝑓𝑖,             𝐷𝑘 =

 
𝐸𝑘 ℎ

3

12 (1−�̃�2) 
 ,   𝐷3   =  − 𝐷1  .   

Equations of motion of a plate element for 
bending vibrations 
𝜕𝑄𝑥 

𝜕𝑥
+

𝜕𝑄𝑦

𝜕𝑦
 − 𝜌ℎ

𝜕2𝑤

𝜕𝑡2  = 𝑞 (𝑥, 𝑦, 𝑡),          (17) 
𝜕𝑀𝑥

𝜕𝑥
 +  

𝜕𝐻𝑦𝑥

𝜕𝑦
 =  𝑄𝑥,      

𝜕𝐻𝑥𝑦

𝜕𝑥
 +  

𝜕𝑀𝑦

𝜕𝑦
 =  𝑄𝑦, 

𝜌 −plate material density. 
𝜕𝑄𝑥 

(л)

𝜕𝑥
+

𝜕𝑄𝑦
(л)

𝜕𝑦
 + 𝜌ℎ 𝜔2 𝑤𝑘 = 𝑞𝑘  (𝑥, 𝑦), 

𝜕𝑀𝑥
(𝑘)

𝜕𝑥
 +  

𝜕𝐻𝑦𝑥
(𝑘)

𝜕𝑦
 =  𝑄𝑥

(𝑘), 

𝜕𝐻𝑥𝑦
(𝑘)

𝜕𝑥
 +  

𝜕𝑀𝑦
(𝑘)

𝜕𝑦
 =  𝑄𝑦

(𝑘)
. 

 
In our case, we add the equation for the 
moment 
 
{𝜀𝑥 , 𝜀𝑦 , 𝛾𝑥𝑦 , 𝜎𝑥 , 𝜎𝑦  , 𝜏𝑥𝑦 })  

= 𝐿 {𝜀𝑥
(𝑘)

 , 𝜀𝑦
(𝑘) , 𝛾𝑥𝑦

(𝑘) , 𝜎𝑥
(𝑘) , 𝜎𝑦

(𝑘)  , 𝜏𝑦𝑥
(𝑘)} , 

 
𝑥( 

𝜕𝜎𝑥𝑦

𝜕𝑥
+ 𝜕𝜎𝑦𝑦

𝜕𝑦
+  

𝜕𝜎𝑧𝑦

𝜕𝑧
) −  𝑦( 

𝜕𝜎𝑥𝑥

𝜕𝑥
 +   𝜕𝜎𝑦𝑥

 𝜕𝑦
+

 
𝜕𝜎𝑧𝑥

𝜕𝑧
 ) + 𝜎𝑦𝑥 − 𝜎𝑥𝑦 = 0 

We write the equation in standard form 
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𝜕𝜎𝑦𝑥

 𝜕𝑦
  + 𝜎𝑦𝑥/𝑦 = 𝑥

𝑦
( 

𝜕𝜎𝑥𝑦

𝜕𝑥
+ 𝜕𝜎𝑦𝑦

𝜕𝑦
+  

𝜕𝜎𝑧𝑦

𝜕𝑧
) +

(
𝜕𝜎𝑥𝑥

𝜕𝑥
 +   + 

𝜕𝜎𝑧𝑥

𝜕𝑧
 ) + 𝜎𝑥𝑦/𝑦                               (18) 

 ∆𝑥𝑦 =  𝜎𝑦𝑥 − 𝜎𝑥𝑦
 

𝜕𝜎𝑥𝑦

𝜕𝑥
+ 

𝜕∆𝑥𝑦

𝜕𝑥
+ 

∆𝑥𝑦

𝑦
  = 

𝑥

𝑦
( 

𝜕𝜎𝑥𝑦

𝜕𝑥
+ 𝜕𝜎𝑦𝑦

𝜕𝑦
+

 
𝜕𝜎𝑧𝑦

𝜕𝑧
) + (

𝜕𝜎𝑥𝑥

𝜕𝑥
 +   𝜕𝜎𝑧𝑥

𝜕𝑧
 ) 

∆𝑥𝑦=  𝑒−𝐹 ( 𝐶 +  ∫ ( −
𝜕𝜎𝑥𝑦

𝜕𝑥

𝑥

𝜉
 +  

𝑥

𝑦
( 

𝜕𝜎𝑥𝑦

𝜕𝑥
+ 

𝜕𝜎𝑦𝑦

𝜕𝑦
+  

𝜕𝜎𝑧𝑦

𝜕𝑧
) + (

𝜕𝜎𝑥𝑥

𝜕𝑥
 +   𝜕𝜎𝑧𝑥

𝜕𝑧
 ))𝑒𝐹𝑑𝑥) 

𝐹 = ∫
1

𝑦

𝑥

𝜉
𝑑𝑥 = 

1

𝑦
 (𝑥 − 𝑦). 

Finally  we get 
𝜎𝑦𝑥 =  𝜎𝑥𝑦 − 𝑥( 

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+  

𝜕𝜎𝑧𝑦

𝜕𝑧
 ) +

 𝑦( 
𝜕𝜎𝑥𝑥

𝜕𝑥
 +   𝜕𝜎𝑥𝑦

 𝜕𝑦
+  

𝜕𝜎𝑧𝑥

𝜕𝑧
 ). 

We use the results of the solution for the 
symmetric tensor; if we take 𝜎𝑥𝑦 as a basis, 
then the first item disappears. 
𝜎𝑦𝑥 =  𝜎𝑥𝑦 − 𝑦( 

𝜕𝜎𝑥𝑥

𝜕𝑥
 +   𝜕𝜎𝑥𝑦

 𝜕𝑦
+  

𝜕𝜎𝑧𝑥

𝜕𝑧
 ),    (19) 

We need to write next equation for other 
coordinates. If there is a force, the parenthesis 
is replaced by that force. An iterative 
procedure is performed. 
 

5. About   some difference schemes 
An important role, in addition to choosing a 
model, is the choice of a solution method. 
When solving problems of aeromechanics, 
the control volume method is often used at 
present by using for approcsimation  on  time   
Runge-Kutta schemes with various 
modifications [17,18]. The finite volume 
method is an integral method. If it comes 
from the initial experimental setting, then it 
grasps all the components involved in the 
change in value physical values in the 
volume. However, now the method is being 
built on the basis of existing differential 
equations. In addition, the method uses the 
values of functions on time layers without 
passing to intermediate points in time. 
Intermediate values are replaced by the 
introduction of additional coefficients. We 
give two versions of schemes that, after 
excluding intermediate calculations, do not 
lead to the Taylor series. Schemes are three-
layer on time, explicit. The latter gives them 
an advantage over implicit ones. The latter 
gives them an advantage over implicit ones, 

but it is not  to get a higher order than 
traditional explicitly implicit ones. 
 First, consider the classic version of the 
method 
 
𝑦′ = 𝑓 (𝑥, 𝑦),              𝑦(𝑥0) =  𝑦0.          (20) 
[𝑥0, 𝑋],        𝑋 > 𝑥0. 
𝑥1 =  𝑥0 + ℎ < 𝑋, ℎ > 0.  𝑘1, 𝑘2,     𝑘3,  𝑘4 
𝑘1 = ℎ 𝑓(𝑥0, 𝑦0.), 

𝑘2 = ℎ𝑓(𝑥0 +
ℎ

2
, 𝑦0. +

𝑘1

2
) 

𝑘3 =    ℎ𝑓(𝑥0 +
ℎ

2
,

𝑦0.

+
𝑘2

2
)                                                                      

𝑘  4    =    ℎ𝑓(𝑥0 + ℎ, 𝑦0. + 𝑘3)   

𝑦1 =      𝑦0. +   (
1

6
) ( 𝑘1 + 2   𝑘2 + 2 𝑘3

+   𝑘4 ) 
 

In the work, the implementation of the 
method is as follows 
 
𝑄𝑖,𝑗,𝑘

(1)
=  𝑄𝑖,𝑗,𝑘

(0)
+ ∆𝑡𝐿 (𝑄𝑖,𝑗,𝑘

(0)
); 

𝑄𝑖,𝑗,𝑘
(2)

=
3

4
 𝑄𝑖,𝑗,𝑘

(0)
+   

1

4
[𝑄𝑖,𝑗,𝑘

(1)
 + ∆𝑡 𝐿 (𝑄𝑖,𝑗,𝑘

(1)
)];) 

𝑄𝑖,𝑗,𝑘
(2)

=
1

3
 𝑄𝑖,𝑗,𝑘

(0)
+   

2

3
[𝑄𝑖,𝑗,𝑘

(2)
 + ∆𝑡 𝐿 (𝑄𝑖,𝑗,𝑘

(2)
)];) 

 

 𝑦(1) =  𝑦(0) +  ∆𝑡 𝑓(𝑥0, 𝑦0.),                 (21) 

𝑦(2) =  
3

4
𝑦(0) +  

1

4
[𝑦(0) +  ∆𝑡 𝑓(𝑥0, 𝑦0.)

+ ∆𝑡𝑓(𝑦(0) +  ∆𝑡 𝑓(𝑥0, 𝑦0.) ] 

𝑦(3) =  
1

3
𝑦(0) +  

2

3
 {

3

4
𝑦(0) +  

1

4
 [𝑦(0)

+  ∆𝑡 𝑓(𝑥0, 𝑦0.)

+ ∆𝑡𝑓(𝑦(0) +  ∆𝑡 𝑓(𝑥0, 𝑦0.) ]

+  ∆𝑡𝑓 {
3

4
𝑦(0) + 

1

4
[𝑦(0)

+  ∆𝑡 𝑓(𝑥0, 𝑦0.)

+  ∆𝑡𝑓(𝑦(0)

+  ∆𝑡 𝑓(𝑥0, 𝑦0.) ]}} 

    
However, after expanding into a series and 
performing the summation, we have 

𝑦(1) =   𝑦(0) +    ∆𝑡 
𝑑𝑦

𝑑𝑡

(0)
+ ⋯          (22) 

 The following term is equal to the coefficient 
1/2 times 𝑓(𝑥0, 𝑦0.)    Therefore, we do not 
get the Taylor series. 
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  It follows that the circuit has a second order 
of accuracy, but its stability increases. 
    Consider the simplest version of the linear 
approximation.   Equation of a line passing 
through two points 

  𝑦−𝑦1

𝑦2−𝑦1
=  

𝑥−𝑥1

𝑥2 −𝑥1
 . 

 By definition of the derivative on the right 
and on the left 
𝑦 ̃ =  𝑦1 +  𝜀1 

𝑦2 − 𝑦1

𝑥2 − 𝑥1

 

𝑦 ̃ =  𝑦1 −  𝜀2 
𝑦1 − 𝑦0

𝑥1 − 𝑥0

 

(𝜀1 
𝑦2 − 𝑦1

𝑥2 − 𝑥1

−  𝜀2 
𝑦1 − 𝑦0

𝑥1 − 𝑥0

 )

𝜀1 + 𝜀2
=

𝑑𝑦

𝑑𝑥
   

 For 
𝜀1 = 𝜀2   we have Dirichlet conditions: a 
function satisfies the Dirichlet conditions in 
the interval (-π, π) if it is either continuous in 
this interval or has a finite number of 
discontinuities of the first kind, and if, in 
addition, the interval (-π, π) can be divided 
into tinite number such intervals, in each of 
which f(x) changes monotonically. In general 
case, the conditions are not met. 
 
6. Correspondence between 

variational and difference 

formulations of problems in the 

theory of elasticity 
In the theory of elasticity, when passing to a 
differential formulation of the problem, the 
equations are transformed in order to simplify 
them, acting on the resulting equations with 
the operators rot, div, which require 
differentiation of functions. For example, 
when obtaining a biharmonic equation. 
Namely, the main task of the theory of 
elasticity (written in integral form, is the 
minimization of energy (the notation is 
standard : 𝐕 –velocity, 𝑓 (𝑽)—function, 𝜀𝑖𝑗 
tensor of stress [19] 

𝐽(𝑽) =  
1

2
  ∫ {𝜆(𝑑𝑖𝑣 𝑽)2

Ω

+ 2𝜇 ∑ (𝜀𝑖𝑗(𝑽))
2

3

𝑖,𝑗

}𝑑𝑥 − 

− (∫ 𝒇 ∙ 𝑽
Ω

 𝑑𝑥 + ∫ 𝑔 ∙ 𝑉 𝑑𝛾
Г𝑖

) =

 
1

2
  𝑎 (𝑽, 𝑽) − 𝑓 (𝑽)                            (23) 

In space 
 
𝑉 ∈ (𝐻1 (Ω ))3;      𝑽 = 0   on  Г0 . 
 
allowable displacements, and the 
corresponding boundary value problem has 
the form 
 
−𝜇∆ 𝒖 − (λ+μ)grad div 𝒖 = 𝒇  в Ω,    
на   Г0 . 
 
∑ 𝜎𝑖𝑗

3
𝑗=1  (𝒖)𝑽𝒋 = 𝑔𝑖       на     Г𝑖  ,    1 ≤

𝑖 ≤ 3. 
 
as already noted, in the case of application of 
surface forces, the div operation is applied to 
the equation. The result is a biharmonic 
equation 
∆∆𝐮 = 0                                         (24)  
At the same time, we narrow the class of 
solutions, requiring greater smoothness of the 
functions. This is especially important in the 
numerical solution of the problem. The use of 
smoother functions in the general case leads 
to a more filled matrix with the same 
requirements for the accuracy of the solution. 
The biharmonic equation often underlies a 
new variational formulation of the problem. 
After that, the domains of definition of the 
original problem and the new one are not 
required to coincide. We think we are solving 
the original problem. Therefore, in our 
opinion, it is better to use, if a differential 
statement is necessary, the representation of 
the problem in the form of a system of 
differential equations. 
 
7. Conclusion 
    The paper presents studies of some issues 
of establishing the generality of experimental 
and numerical methods, the possibility of 
describing a continuous medium using 
discrete representations of computational 
mathematics, the influence of the choice of 
basis functions on calculation errors. The 
previously proposed model of continuum 
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mechanics is discussed, including the 
combined action of forces and distributed 
moments of forces, the role of boundary 
conditions in Hamiltonian mechanics, and 
features of the most commonly used 
computational methods for solving problems 
in mechanics. The following cases are 
chosen: the Couette problem and 
consideration of the influence of the 
asymmetric stress tensor in the problem of 
establishing existing viscoelastic rectangular 
plates. 
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