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Abstract: - In this paper we develop mathematical models for three dimensional stationary hyperbolic heat
equations with inner source power and we construct their analytical solution. We solved three-dimensional for
two contacted rectangles with inner heat sources and full non-homogeneous boundary conditions. The
application for such mathematical model can be very different. Exact solution is in the form of the Fredholm
integral equation on the continuous plane between both rectangles. We use Green function for the both

rectangles.
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1 Introduction
Real processes take place in natural or technical
systems with complicated structure. Very often such
systems consist of separate layers with different
thickness and different physical properties. It means
that on the surfaces between two adjacent layers we
have jump in coefficients of differential equations
mathematically describing correspondent physical
process. A great number of different engineering
branches are concerned with rapid heat energy
transitions. In the construction of various types of
efficient heat transfer equipment to the so-called
prime surface are supplemented with additional
surfaces, e.g., a rectangular fin. Such heat transfer
equipment is related to refrigerators, radiators,
engines and microelectronics, etc. The traditional
mathematical description of heat flow between a
source and a sink very often is bounded by the so-
called Murray-Gardner’s hypotheses [1] - [3].
Usually its mathematical modeling is realized by one
dimensional steady-state assumptions [3].
We investigate such type of systems with fins more
than 20 years. In our previous papers in the years 80-
ties and later we elaborate conservative averaging
method [4] - [11]. This method is applicable for
very different mathematical models of all types of
differential equations: parabolic [12] — [21], [23],
[24], elliptic [22] and hyperbolic types [27] — [36].
We investigate the parabolic type equations for
underground fluid movements in the multilayered
systems [12] — [15].
We have constructed two and three dimensional
analytical approximate [12] — [15] and exact [21]
solutions.
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In this paper we obtain exact analytical three
dimensional solution by the original method of
Green function method for non-canonical domain.
Here we look for two connected rectangles. We can
use Green function method for two rectangles, use
conjugations conditions between both rectangles. It
is possible to use this method this method is possible
use for more canonical domains. For example we
use this method for system with two fins [17], [22].

2 Statement of the 3-D problem
It is widely known that Green function method
allows solving the boundary problem for the
non-homogeneous  equation and  non-
homogeneous boundary conditions. We ignore
the 1-D problem statement and use 3-D
statement with conservation equality. Important
is that Green function method is applicable for
canonical domain. System with fin consists for

the wall: {x[0,5],y<[0,b],z<[0,c]}and the

fin:{XE[§,a], ye[ob],z e[o,c]} in the non-

dimensional arguments. This 3-D formulation
can be used in very different applications. The
main equation for the wall and boundary
conditions we assume in non-homogeneous
form:

OV (%, ¥,2) | OV (% ¥,2)  OVo(%¥,2) _
ox? oy? ozt
=-Qy(x.Y.2),{xe[0,5],y €[0,b],z€[0,c]},
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=—0y(Y.2),y€[0,b],z€[0,c],

=—0y(x,2),x€[0,5],z€[0,c],

(1)

=0y, (x,2),x€[0,6],2€[0,¢],
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=—0gs (%, ¥), x€(0,5),y € (0,b),

oz

= 0o (X,Y), x€(0,6),y € (0.b).

Similarly as in the main equation for the fin,
and boundary conditions we assume in non-
homogeneous form:

oV (X, Y,2) . oV (X, Y,2) . oV (X, Y,2) _
ox? oy? oz’
=-Q(x,Y,2),
{Xe[é‘,&],ye[O,bl],Ze[O,C]},
68_\;4'71\/ qu(y,Z),
x=a,ye[0,b],ze[0,c],

oV

6—y—7/2 =—0,(x,2),y=0,xe[d,a], (2)
oV

a—y+;/3v =0,(x,2),y=h,xe[d.a],

oV

= PV ==di(xy).2=0,
xe[s,a],ye[0,b],
%+ﬂsv=qs(x,y)’2=cy
xe[s.a],ye[0.b].
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In the statements for the wall and the fin we
have only 5 boundary conditions. But we have
two conjugations conditions between the wall
and the fin are in the form:

V0|x=a>o =V |x=6+0 !
B B @
’ aX x=0—0 ' aX x=5+0.

The main idea is to transform both conjugations
conditions as third type boundary conditions
(BC). The BC for the wall we formulate similar
with to the BC for x=46":

[%wovo] ~F(y.2) @)

x=0-0

As we see BC (4) is not known, it has function
of the temperature of the wall and its first

derivative. We assume that function F(y,z) is

known and we get the solve solution for the
wall with the Green function.

3 Solution for the wall with the

Green function
We know the Green function for the rectangular
domain, but we don’t have boundary for the x =¢':

v, B 3
(E*‘ﬂovoj =F(y.2)=

x=6-0
a, ( oV a

:_l(_"'ﬁevj 1ﬁe:,30_0-
o, \ OX o540 a,

Of course, the function F(y,z)is unknown.

But now we can write the exact solution of
problem (1) by Green function in the form:

Vo(X, ¥, 2) =Dy (X, Y, 2)+

b c

[dn[F(7,6)G, (%, v,2,6,m,5)ds,
0 0

D, (X, y,2)=

Tdéfdano (&1.6)Go (%Y. 2, m 5 )ds +

®)

(6)

dé [ (£,77) G, (%, y,2,&,m)dn +

(7)

Ot Y, O,

d[ e (,7)Go (X, ¥,2,€,0,7)dg +

Volume 2, 2017



Buike Margarita, Buikis Andris

+Id§_|.qoz (‘f’g)GO(X’ Ys z,f,b,g)dg

+Id§Iq03(§’77)Go(Xy Y, Z,f,U,O)dn

b c

+[dn [ ae (&7)G
0 0

The Green function has such form [37]:

G, (X, y,Z,f,ﬂ,g)ziiz(ﬂno(X)

n=1 m=1 s=1 ||¢n0||

o (X y,2,&,m,c)dg.

¢m0(Y)¢mo(77)Zso(Z)Zso(§)

||¢mo||2 ”gso”2 (/Ur?O + /12 + Vzo)

Pno (X) =c0S( £4,X )+&sm(y X),
I

n

2 ﬁo ﬁo a o2
- Zl1+ 0
ool 207 2l 2( T ]
ﬁm(y):cos@%y)+§?sm(ﬂmyy (9)
2 ﬂz ﬂrﬁ +ﬂ12 ﬂl :Bl
= 1 ,
[#.o] 242 A2+ p? " 2,12 2 Tz A2
2o (2)=cos(v,2)+ Posin(v,2),
VS
”I ” B ve +:Ba ﬂs +ﬂ_32 .
s0 2v VS +,B4 2v 2 VSZ

The eigenvalues A, 1,,,0,, are positive roots
of the transcendental equations:

2, _t9(ma) p+p, _t9(2b)

2_ 2 ’/12_ - ’
u = p, H Bbs (10)
B+ B _t9(x)
=B x
We need the combination F(y,z) from
equation (4):
R (Y.2) =Y, (x.y.2)|_ +
b c
[dn[F(n.6)To(6.y.2.€m.6),d¢,
0 0 (11)
Yo (X, y,2)=
oD, (x,Y,2
001D,
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To(xY,2,¢,1m,6)=
[5Go(x, Y,2,£17,5)

™ + B:Go (X, y,Z,é,n,g)}

4 Solution for the fin with the Green

function

Now we can go to the fin. We transform the left
side boundary condition with the conjugation

conditions:
ov
__ylvj :F(y,z):
( 8X x=6-0
v, a
— __7’6\/0} 176=71_l’
( 6X Xx=0+0 0(0

ye(0,b),ze(0,c).

Exact solution of the fin we can write in the

following form:
V(XY 2)=®(xYy,2)+

by c
[dn[F(n.¢
0 0
D(x,y,2)=

)
Tdé?dan(f,n,g)G(X’ y,z.8,m.6)dg

b c
+[dn[a,(7.6)G(xy.z.a,n.¢)d¢
0 0

G(xY,2,6,1,¢)dg,

+[df,(£.6)G(xy.2.£,0,c)
+défas(mB (% y.2.£b.5)dg
+[defa,(£:6)G(xy.2.£,0,c)

a b
+[defas(£,.6)G(x.y,2.6b,6)dg.

3 0
The Green function has such form [37]:

G(X y,Z,f 7, g) ZZZ ¢n(||)21n(§)

I (1)1, (2) 2, (5)
2 QH(X):
Wl (445 +20+v2)

(14)
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=cos(u, (Xx—5))+ Z: sin( u, (x-9)),

1 a_5[1+71j
My 2 Hy

¢, (y)=cos(4, y)+/1—sm(/1my),

m

lon|| =

Vs ItV Vs B[ 75

I = 22 A5+ §+2,1n§ 2 +ﬂ,§ ’
2. (z)=cos(v,z)+ 74sin(vsz),
VS

2 2 2

Vs Ve ¥ 74 , Vs  C V4

= —1+=.
”ZS” 2v, v2+7/52+2v52+2( +V52J

The eigenvalues A, u,,v, are positive roots of
the transcendental equations:

27, :tg[ﬂ(a_5)] Y2t7s :tg(/lbl)
w =y N
VatVs :tg(;(C)
-rrs X

We transform the equation (13) with respect
to F(y,2):
oD(X,Y,
F(y,z)zﬁ[M
OX

Q,

o)

X=0

_1j njF 7.6)T(8,y,2.6m.6),_,ds, (15)
r(xy
[%G(x,y,z,gﬁn,g)—G(X,y,Z,f’Uig)}

z,5,77,g):

é=5

4 Exact integral solution for the wall

and the fin
In this section we describe the connection of the

wall and the fin. We designate:

1 0G(xy.z,¢m5)
1

r(x, y,z,f,q,g):ﬁ o G(xY,2,&1.5).

=Y, (xy.2)), +Idﬂj F(me)To(xy,2.&m¢), ds,

R (y.2)

aD(xy.2)

b ¢
Y
- T !dnl Fo(n.)0(5,y.2.6m.6), , ds.

wcual]
o]

%y

F(y.2)= {

F(n.c)=

by ¢
S fdn[F(me)r(0.y.2.6me), da
00 0

b

+Id'71_“ F (771v§1)r0 (§v Y, Zvév’hvé‘l)‘;,ddﬁ .

0 0

F (771v§1) = [YO (X' A Z)‘x—a‘
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The formulas (11) and (15) give such representation
for F,(y,z),F(y,2):

Fo(y,z):Yo(x,y,z)|X:a+
o (16)
[dn[F(m.6)Ts(xy,2.€m.6),_,ds,
_a[00(xy.2)
F(y,z)_a—iT—@(x,y,z)}
=0 (17)

by c
- dn[Fy(n.6)T(8,y.2.£m.6),, ds.
o 0
Now we give representation for the F (n,g):

M q)(x’ y’z)}

Fne)= a([ ox

X=0

by c
_1,[ .[ 771,§1 5 y,2,¢, 771,§1)| dgl’
0 0 0
F(m.6)= [ o (X, y’Z)|x:5+

Idmf F(m.6)T0(8,Y, Z,é,m,gl)IHdgl}-
0 0

It can be written in short form:
F(n.6)=2(3,y.2)-

by

“ Jan[F(na)r(6.y.2.ms), , da
00 0

'E(Ulvgl):

b c
[dn,[F (106,)T (8,¥,2.6,m,16,),_, ds
0 0

First equation of (18) is Fredholm second type
integral equation:

F(n,g)=CT)(5, y,z)—

a by c b c
_1jd771J‘dg2_[d772J.F (772’g2)x
Oy % 0 0 0

o(8,Y:2.8,.6,)|,, T (8,y.2.6,m.6)),_, de

To solve this integral equation we can solve
integral equation (16) and equation (17). Than
IS easy to solve stationary equations (6), (13).

(18)

5 Conclusions

We solved three-dimensional problem for two
contacted rectangles with inner heat sources and full
non-homogeneous boundary conditions. The
applications for such mathematical model can be
very different. Exact solution is in the form of the
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Fredholm integral equation on the continuous plane
between both rectangles. We generalize Green
function method for connected canonical rectangles.
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