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Abstract: A model with Orthogonal Block Structure, OBS, is characterized by its variance-covariance matrices

being all positive semi-definite matrices given by
m∑
j=1

γjKj , where K1, . . . ,Km, are known orthogonal projection

matrices that are pairwise orthogonal. We show that when normality is assumed, models with OBS have complete

suffiient statistics and we will obtain uniformly minimum variance unbiased estimators both for estimable vectors

and variance-covariance matrices. The case of normal mixed models written as y =
w∑
i=0

Xiβi, where β0 is fixed

and the β1, . . . , βw being normal independent, is considered and an example is discussed.
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1 Introduction

Nelder, see [7, 8], introduced models with Orthogo-

nal Block Structure, OBS, as models where the family

V =

{
m∑
j=1

γjKj

}
of variance-covariance matrices is

constituted by all positive semi-definite matrices

V =

m∑

j=1

γjKj ,

where the K1, . . . ,Km are known orthogonal projec-

tion matrices that are pairwise orthogonal and add up

to In and the γ1, . . . , γm are the canonic variance com-

ponents.

We now point out that for all positive semi defi-

nite matrices
m∑
j=1

γjKj to be variance-covariance ma-

trices, we must have γ = (γ1, . . . , γm) ∈ Rm
+ , with

∇+ the family of vectors of subspace ∇ with non neg-

ative components on the γ1, . . . , γm. The existence of

such restriction would permit, see [5], the model den-

sity to be full rank when we assume normality. So

we than could not have complete and sufficient statis-

tics from which to derive uniformly minimum vari-

ance unbiased estimators (UMVUE).

We will apply our results to normal mixed models

y =

w∑

i=0

Xiβi

where β0 is fixed and the β1, . . . , βw are normal,

independent with null mean vectors and variance-

covariance matrices θ1Ic1 , . . . , θwIcw . Thus y will be

normal with mean vector µ = X0β0 and variance-

covariance matrix V(θ) =
w∑
i=1

θiMi with Mi = XiX
⊤
i ,

i = 1, . . . , w. We will show that such model have

OBS, when matrices M1, . . . ,Mw commute and so,

see [2],

Mi =

m∑

j=1

bi,jKj i = 1, . . . ,m

with K1, . . . ,Km known orthogonal projection matri-

ces that are pairwise orthogonal, if and only if w = m.

This is an important point since considering mod-

els such as those given by Example 1 and 2 of [4], do

not satisfy this condition. Actually we will present a

possible modifications of these models to ensure that

the modified models have OBS and, when normality

is assumed, complete and sufficient statistics.

Namely this modification holds for models with

u random effects factors that cross. Then w = 2u and
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the Xiβi, i = 1, . . . , w, corresponds to the effects and

interactions of these models.

When normality is assumed we get UMVUE for

variance components and estimable vectors in such

models.

We now apply our results to normal mixed mod-

els,

y =

w∑

i=0

Xiβi,

where β0 is fixed and the β1, . . . , βw are normal,

independent with null mean vectors and variance-

covariance matrices θ1Ic1 , . . . , θwIcw . In what follows

we put z ∼ N (η;W) to indicate that z is normal

with mean vector η and variance-covariance matrix

W. Namely for these normal mixed models, we will

have y ∼ N

(
X0 β0;

w∑
i=1

θiMi

)
, with Mi = XiX

⊤
i ,

i = 1, . . . , w. We will characterize these models that

are NOBS or have OBS when normality is discarded

and, in the case of NOBS, our results.

2 Sufficient statistics and natural pa-

rameters

Let the row vectors of a matrix Aj constitute an or-

thonormal basis for the range space ∇j = R (Kj) of

Kj , j = 1, . . . ,m. Then, with gj = rank (Kj) =
rank (Aj), j = 1, . . . ,m, we have

{
AjA⊤

j = Igj j = 1, . . . ,m

A⊤
j Aj = Kj j = 1, . . . ,m.

If the initial NOBS model y has, besides variance-

covariance matrix V, mean vector µ = Xβ, we get the

normal homocedastic sub-models

yj = Ajy ∼ N
(
µj; γjIgj

)
, j = 1, . . . ,m.

The y1 . . . , ym are independent since they have

joint normal density and null cross-covariance matri-

ces.

Let Pj and Qj be the orthogonal projection ma-

trices on the space Ωj spanned by the mean vector µj

and its orthogonal complement, j = 1, . . . ,m. We

put pj = rank(Pj) and qj = rank(Qj) and consider

the sets {
C = {j : pj > 0}
D = {j : qj > 0} .

Let also the row vectors of Wj , j ∈ C , constitute

an orthonormal basis for Ωj so that Pj = W⊤
j Wj , j ∈

C . Then it is easy to show that
∥∥yj − µj

∥∥2 = Sj − 2µ⊤
j yj + ‖µj‖

2

= Sj − 2eta⊤j η̃j + ‖ηj‖
2 , j ∈ C ,

with ηj = Wjµj , η̃j = Wjyj and Sj = ‖y‖2, j ∈ C ,

and that
∥∥yj − µj

∥∥2 = Sj, j /∈ C .

Thus, the sub-models will have densities




nj

(
yj
)

= e
−

1
2γj

(
Sj−2η⊤j η̃j+‖ηj‖

2
)

(2πγj)
gj , j ∈ C ,

nj

(
yj
)

= e
−

Sj
2γj

(2πγj)
gj ,

j /∈ C .

If we take C = {1, . . . , z}, the joint density of

the sub-models will be, since they are independent,

n(y) =
e
− 1

2

(
z∑

j=1

(µjSj−2ξ⊤j η̃j+νj‖ξj‖2)+
m∑

j=z+1

νjSj

)

m∏
j=1

(
2π
νj

) gj
2

,

with sufficient statistics Sj , j = 1, . . . ,m and η̃j , j =
1, . . . , z, and natural parameters ν with components

νj = γ−1
j , j = 1, . . . ,m, and

ξ =
[
ξ⊤1 · · · ξ⊤m

]⊤
,

where ξj =
1
γj
ηj , j = 1, . . . ,m.

We now establish the following theorem.

Theorem 1

For NOBS the statistics Sj , j = 1, . . . ,m, and η̃j ,
j = 1, . . . , z, are complete and sufficient.

Proof: Let Γ be the parameter space for the joint den-

sity. To show that the mentioned statistics are com-

plete and sufficient, we have only to show that Γ con-

tains the cartesian product of non degenerate intervals,

one for each component of λ = [ν; ξ], see [5] which

follows from

• νj = γ−1
j where γj may take non negative val-

ues, j = 1, . . . ,m;

• ξj spanning Rpj , since µj = W⊤ξj spans Ωj ,

j = 1, . . . , z.

⊓⊔
A first interesting application of this result is to

estimable vectors. It is easy to see that Ψ will be es-

timable if it may be written as

Ψ = Uµ.

Now

µ =




z∑

j=1

Kj


µ =

z∑

j=1

A⊤
j µ

⊤
j =

z∑

j=1

A⊤
j Wjηj,
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so

µ̃ =
z∑

j=1

A⊤
j Wj η̃j ,

and

Ψ̃ = Uµ̃,

being unbiased and function of the complete and suf-

ficient statistics, is UMVUE.

Since

y⊤j Qjyj = y⊤j yj − y⊤j Pjyj = Sj − ‖η̃j‖
2 , j ∈ D ,

the estimators

γ̃j =
Sj − ‖ηj‖

2

qj
, j ∈ D ,

will be unbiased and derived from the complete suffi-

cient statistics, so they will be UMVUE.

3 Mixed models

As stated in the Introduction, we now consider normal

mixed models y ∼ N

(
X0β0;

w∑
i=1

θiMi

)
, where the

matrices of M = {M1, . . . ,Mw} commute.

The matrices M1, . . . ,Mw are symmetric so they

commute if and only if they are diagonalized by the

same orthogonal projection matrix, see [9]. Thus they

belong to the family of matrices diagonalized by P of

symmetric matrices that commute. Moreover A (P)
will contain the squares of its matrices, thus being a

commutative Jordan algebra (CJA) of symmetric ma-

trices. Each such algebra A has, see [10], an unique

basis constituted by orthogonal projections matrices,

that are pairwise orthogonal, the principal basis of A ,

pb(A ). With pb(A ) = {K1, . . . ,Km}, we will have

Mi =

m∑

j=1

bi,jKj i = 1, . . . , w

thus, with V the variance-covariance matrix of the

model, we have

V =

w∑

i=1

θiMi =

m∑

j=1

γjKj

with

γj =

w∑

i=1

bi,jθi

so that γ ∈ R
(
B⊤)

+
, for the model to have OBS.

Since w is the number of random vectors and m the

number of sub-models, or strata, used to carry out the

inference, we see that this equality between both num-

bers is necessary for having OBS. Again, consider-

ing the Example 1 and 2 in [4], for better compari-

son, we see that they do not have OBS, unless we dis-

card the requirement that all positive definite matrices
m∑
j=1

γjKj may be variance-covariance matrices.

Moreover, when w < m, the condition γ ∈
R

(
B⊤)

+
implies the existence of linear restrictions

between the components of γ so, the density cannot

have full rank, see [5]. Thus the requirement of B be-

ing invertible is highly connected with the model hav-

ing OBS and, if normality is assumed, with having

complete and sufficient statistics. Actually this con-

dition (w = m) follows, as we showed, from the re-

quirement of the model having OBS as defined in [7],

[8].

Thus for there being no restriction on the

γ1, . . . , γm, B = [bi,j] must be invertible. Reasoning

as for establishing theorem 1, we get the following

theorem.

Theorem 2

A normal mixed model such that its matrices

M1, . . . ,Mw commute, has complete and sufficient

statistics if and only if matrix B is invertible.

We also may establish the following theorem.

Theorem 3

A normal mixed model such that its matrices

M1, . . . ,Mw commute is NOBS, if and only if matrix

B is invertible.

Proof: The variance-covariance matrices may be all

positive semi-definite matrices,
m∑
j=1

γjKj , if and only

if there are no linear restrictions on the γ1, . . . , γm
and, since the vector γ ∈ R

(
B⊤), this happens if

and only if matrix B is invertible. ⊓⊔
Now Ψ = Gβ is estimable if and only if Ψ =

Uµ = UX0β0 , this happening if

G = UX0,

and we have, when B is invertible and thus are com-

plete sufficient statistics, the UMVUE

Ψ̃ = Uµ̃ = U

z∑

j=1

A⊤
j Wj η̃j .

This result is very similar to the ones in the pre-

ceding section. Where there is something new is on

the estimation of the variance-covariance components
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θ1, . . . , θm, since if B is invertible, we must have

w = m. Putting

C =
[
B⊤

]−1
= [cℓ,h] , ℓ = 1, . . . ,m;h = 1, . . . ,m,

from

γ = B⊤θ,

we get

θ = Cγ.

If

θℓ =
∑

h∈D

cℓ,hγh, ℓ = 1, . . . ,m,

we get the UMVUE,

θ̃ℓ =
∑

h∈D

cℓ,hγ̃h, ℓ = 1, . . . ,m.

4 An example

We now assume the model to have a random effect

factor that cross with a1, . . . , an levels, so there will

be n =
u∏

h=1

ah observations, m = w = 2u terms in

the random effects part associated to the sets X of

factors. If #(X ) = 1 [> 1] the term will be associ-

ated to the factor [factors] with index [indexes] in X .

These sets may be ordered according to the indeces

i(X ) = 1 +
∑

h∈X

2h−1 = 1, . . . , w,

so the model can be written as

y =
w∑

i=0

Xiβi

where β0 is fixed and the β1, . . . , βw are independent,

with null mean vectors and variance-covariance ma-

trices θ1Ici , . . . , θwIcw .

We point out that the fixed effects part X0β0,

where X0 is a n × k matrix, is quite fluid since the

only restriction to be applied to it is that the column

vectors of X0 are linearly independent.

This case has been studied thus, see for instance

[2],

Xi =
u

⊗
h=1

Xi,h i = 1, . . . , w,

where ⊗ indicates the Kronecker matrix product, and,

with Xi the set with index i, i = 1, . . . , w, we have

Xi,h =

{
1ah h /∈ Xi

Iah h ∈ Xi

for h = 1, . . . , u; i = 1, . . . ,m.

It is easy to show that the matrices Mi = XiX
⊤
i ,

i = 1, . . . , u, commute, moreover, see [6], we have

the transition matrix

B =




au 0

1 1


⊗. . .⊗




a1 0

1 1


 =




n 0⊤

b B◦




and the orthogonal projection matrices that are pair-

wise orthogonal, for this model, are

Kj =
u

⊗
h=1

Kj,h j = 1, . . . ,m

where

Kj,h =





1
ah

Jah h /∈ Xj

Iah − 1
ah

Jah h ∈ Xj

for h = 1, . . . , u; j = 1, . . . ,m,, with Ja = 1a1⊤a .

Since the Kronecker matrix product of invertible

matrices results in invertible matrices, the transition

matrix B will be invertible, as well as B◦, B⊤ and B◦⊤ ,

so this models will be NOBS.

It is important to point out that

K1 =
u

⊗
i=1

(
1

a1
Ja1

)

so p1 = g1 = 1 and q1 = 0, so 1 /∈ D . Thus despite

there being complete and sufficient statistics, we do

not have unbiased estimators for γ1. Putting γ◦ =
(γ2, . . . , γm) and θ◦ = (θ2, . . . , θm), we have

θ◦ =
(

B◦⊤
)−1

γ◦

and so, when {2, . . . ,m} = D , we will have the

UMVUE

θ̃◦ =
(

B◦⊤
)−1

γ̃◦

where the components of γ̃◦ are obtained as before.

Moreover, see [6],

Aj =
u

⊗
h=1

Aj,h j = 1, . . . ,m

with

Aj,h =





1√
ah

1⊤ah h /∈ Xj

Fah h ∈ Xj
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for h = 1, . . . , u; j = 1, . . . ,m, where Fa is obtained

deleting the first row equal to 1√
ah
, . . . , 1√

ah
of a ah×

ah orthogonal matrix Pah , so that

Iah = P⊤
ah

Pah

=
[

1√
ah

1ah F⊤
ah

] [
1√
ah

1ah F⊤
ah

]⊤

= 1
ah

Jah + F⊤
ah

Fah

and so

F⊤
ah

Fah = Iah −
1

ah
Jah ,

so that

gj =
∏

h∈Xj

(ah − 1).

We can now reorder the terms to have pj > 0 if

and only if j 6= z, in order to obtain the





yj = Ajy j = 1, . . . , z

X0,j = AjX0 j = 1, . . . , z

and the orthogonal projection matrices

Pj = W⊤
j Wj j = 1, . . . , z

on the R(X0,j), j = 1, . . . , z, as well as the

η̃j = Wjyj j = 1, . . . , z

in order to get the

Ψ̃ = U

z∑

j=1

A⊤
j Wj η̃j.

We point out that the fact that X0 may be any ma-

trix with linearly independent k column vectors ren-

ders difficult the obtainment of more detailed general

results. Thus we opted for showing how to obtain the

matrices specific for this analysis, namely the matri-

ces Kj and Aj , j = 1, . . . ,m.

5 Final comments

We have shown how assuming normality leads to

optimal results for models with OBS. Thus NOBS

emerges as an important class of models with OBS.

Our approach is quite distinct from other that rest, as

is the case of OBS, on the algebraic structure of the

models. This clearly can be seen in connection with

estimable vectors. Thus see [12], when T, the orthog-

onal projection matrix on the space spanned by the

mean vector, commutes with V, the least squares es-

timators of estimable vectors are best linear unbiased

estimators. Now, assuming normality, leads to a inter-

esting result without no requirement on matrix T.

The requirement of all positive semi-definite ma-

trices given by
m∑
j=1

γjKj being possible variance-

covariance matrices is also considered for orthogonal

models, see [11]. These are OBS models in which

the orthogonal projection matrix T commutes with the

known orthogonal projection matrices K1, . . . ,Km

that are pairwise orthogonal. Thus if we assume nor-

mality for an orthogonal model it will have complete

sufficient statistics as well as UMVUE for the rele-

vant parameters. Thus the normal orthogonal models

constitute in themselves an interesting class of models

which may deserve to be studied.

Similar studies can be extended to an also inter-

esting class of models with OBS, the ones with Com-

mutative Orthogonal Block Structures see e.g. [3],

and their relation with error orthogonal models, see

[1].
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